View More View Less
  • 1 Institute of Isotopes of the Hungarian Academy of Sciences, 1525, P.O. Box 77, Budapest, Hungary
  • | 2 Laboratory of Nuclear Chemistry, CRC of the Hungarian Academy of Sciences at Eötvös University, 1518, P.O. Box 32, Budapest, Hungary
Restricted access

Abstract

The thermal behavior of tin containing oxalate, EDTA, and inositol-hexaphosphate were investigated. The end products of synthesis were identified by Mössbauer-, XRD analyses, and FTIR studies. The thermal decompose of the samples was studied by DTA-TG analysis. The simultaneously obtained DTA and TG data makes it possible to follow the thermal decomposition of the investigated samples. The tin oxalate decomposed in the temperature range of 520–625 K through tin carbonate formation and finally yielded CO2 and SnO. The tin EDTA complex first lost its hydrate bound water till 520 K. The followed thermal events related to the pyrolysis of anhydrous salt. The intense exothermic process that exists in the temperature range of 820–915 K is due to the formation of SnO2. The tin sodium inositol-hexaposphate lost its hydrate bound water (∼10%), up to 460 K. The following sharp exothermic process, in the temperature range of 680–750 K is due to the decomposition and parallel oxidation of organic part of the molecule. At the end of this process, a mixture of phosphorous pentaoxide, sodium carbonate, and tin dioxide is obtained.

  • 1. Dollimore, D, Griffiths, DL. Differential thermal analysis study of various oxalates in oxygen and nitrogen. J Thermal Anal. 1970;2:229250. .

  • 2. Audebrand, N, Vaillant, M-L, Auffrédic, J-P, Louer, D. Synthesis, open-framework structure, and thermal behavior of ammonium, tin oxalate. Solid State Sci. 2001;3:483494. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Rak, J, Skurski, P, Gutowski, M, Blazejowski, J. Thermodynamics of the thermal decomposition of calcium oxalate monohydrate examined theoretically. J Therm Anal. 1995;43:239246. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Al-Newaiser, FA, Al-Thabaiti, SA, Al-Youbi, AO, Obaid, AY, Gabal, MA. Thermal decomposition kinetics of strontium oxalate. Chem Paper. 2007;61/5:370375. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Braileanu, A, Mihaiu, S, Bán, M, Madarász, J, Pokol, G. Thermoanalytical investigation of tin and cerium salt mixture. J Therm Anal Calorim. 2005;80:613618. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kolezynski, A, Malecki, A. Theoretical approach to thermal decomposition process of chosen anhydrous oxalate. J Therm Anal Calorim. 2009;97:7783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Guinesi, LS, Riberio, CA, Crespi, MS, Veronezi, AM. Tin(II) EDTA complex; kinetic of thermal decomposition by non-isothermal procedures. Thermochim Acta. 2004;414:3542. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ozawa, T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301308. .

  • 9. Málek, J. Crystallisation kinetics by thermal analysis. J Therm Anal Calorim. 1999;56:763769. .

  • 10. Málek, J, Sesták, J, Rouquerol, F, Rouquerol, J, Oriado, JM, Ortega, A. Possibilities of two non-isothermal procedures for kinetic studies. J Therm Anal. 1972;38:7187.

    • Search Google Scholar
    • Export Citation
  • 11. Szirtes, L, Megyeri, J, Kuzmann, E. Thermal behavior of tin(II/IV) phosphates prepared by various methods. J Therm Anal Calorim. 2010;99/2:415421. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Klencsár, Z, Kuzmann, E, Vértes, A. User friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem. 1996;210:105118. .

  • 13. Kraus W , Nolze G. Refining program Powder Cell version 2.3; 1999.

  • 14. Wendlandt, WW, Horton, GR. Differential thermal analysis of some transition metal-EDTA chelates. Nature. 1960;87:769770. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)