View More View Less
  • 1 Center for Biocomposites and Biomaterials Processing, University of Toronto, 33 Willcocks St., Toronto, ON, M5S 3B3, Canada
  • | 2 Research Institute for Flexible Materials, School of Textiles & Design, Heriot Watt University, Scottish Borders Campus, Galashiels TD1 3HF, UK
Restricted access

Abstract

The aim of this article is to develop nano-scale composite fibers from wood pulp, modified wood pulp, and polyethylene oxide (PEO). Composite fibers were developed in the diameter range of 339–612 nm. Alignment process of the composite fibers was done by electrostatic interactions between two collector disks. DSC results demonstrated a lower melting temperature of composite fibers than PEO powder. The development of crystalline structure in the composite fibers and acetylated wood pulp was poor. Thermogravimetric analysis revealed that the thermal stability of composite fibers were relatively lower than PEO powder. Fourier transform infrared spectroscopy (FTIR) showed significant differences between modified and unmodified wood pulp in the region of 960–1746 cm−1. The peak intensity of acetylated wood pulp was appeared at 1746 cm−1 because of acetyl groups. The composite fibers demonstrated the characteristic peak of PEO since less wood pulp was incorporated in the composite system.

  • 1. Samatham, R, Kim, KJ. Electric current as a control variable in the electrospinning process. Polym Eng Sci. 2006;46: 7 954959. .

  • 2. Frenot, A, Chronakis, IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci. 2003;8: 1 6475. .

  • 3. Darrell, HR, Iksoo, C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7: 3 216 .

  • 4. Dersch, R, Liu, T, Schaper, AK, Greiner, A, Wendorff, JH. Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem. 2003;41: 4 545553. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Kim, C-W, Kim, D-S, Kang, S-Y, Marquez, M, Joo, YL. Structural studies of electrospun cellulose nanofibers. Polymer. 2006;47: 14 50975107. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Gupta, P, Elkins, C, Long, TE, Wilkes, GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular mass and concentration in a good solvent. Polymer. 2005;46: 13 47994810. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Huang, Z-M, Zhang, YZ, Kotaki, M, Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63: 15 22232253. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ramakrishna, S, Fujihara, K, Teo, W-E, Yong, T, Ma, Z, Ramaseshan, R. Electrospun nanofibers: solving global issues. Mater Today. 2006;9: 3 4050. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Matthews, JA, Wnek, GE, Simpson, DG, Bowlin, GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3: 2 232238. .

  • 10. Li, WJ, Laurencin, CT, Caterson, EJ, Tuan, RS, Ko, FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60: 4 613621. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Awal, A, Ghosh, S, Sain, M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim. 2010;99: 2 695701. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Awal, A, Ghosh, S, Sain, M. Development and morphological characterization of wood pulp reinforced biocomposite fibers. J Mater Sci. 2009;44: 11 28762881. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Baltazar-y-Jimenez, A, Sain, M. Environmental aspects of lignocellulosic-fibre reinforced green materials. Can Chem News. 2009;61: 6 1417.

    • Search Google Scholar
    • Export Citation
  • 14. Baltazar-y-Jimenez, A, Bistritz, M, Schulz, E, Bismarck, A. Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol. 2008;68: 1 215227. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Saheb, DN, Jog, JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18: 4 351363. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Bledzki, AK, Reihmane, S, Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci. 1996;59: 8 13291336. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Joshi, SV, Drzal, LT, Mohanty, AK, Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites?. Compos A Appl Sci Manuf. 2004;35: 3 371376. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Awal, A, Cescutti, G, Ghosh, SB, Müssig, J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos A Appl Sci Manuf. 2011;42: 1 5056. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Huber, T, Muessig, J. Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos Interfaces. 2008;15:335349. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Müssig, J, Rau, S, Herrmann, AS. Influence of fineness, stiffness and load-displacement characteristics of natural fibres on the properties of natural fibre-reinforced polymers. J Nat Fibers. 2006;3: 1 5980. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Sain, M, Panthapulakkal, S. Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod. 2006;23: 1 18. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Alemdar, A, Sain, M. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. 2008;68: 2 557565. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Pracella, M, Pancrazi, C, Minhaz-Ul Haque, M, D’Alessio, A. Thermal and microstructural characterization of compatibilized polystyrene/natural fillers composites. J Therm Anal Calorim. 2011;103: 1 95101. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Francis, L, Balakrishnan, A, Sanosh, KP, Marsano, E. Characterization and tensile strength of HPC-PEO composite fibers produced by electrospinning. Mater Lett. 2010;64: 16 18061808. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Nirmala, R, Navamathavan, R, El-Newehy, MH, Kim, HY. Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Mater Lett. 2011;65: 3 493496. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Charernsriwilaiwat, N, Opanasopit, P, Rojanarata, T, Ngawhirunpat, T, Supaphol, P. Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym. 2010;81: 3 675680. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Wang, C, Liu, F-H, Huang, W-H. Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix. Polymer. 2011;52: 5 13261336. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Khalil, H, Ismail, H, Rozman, HD, Ahmad, MN. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur Polym J. 2001;37: 5 10371045. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Paul, A, Joseph, K, Thomas, S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol. 1997;57: 1 6779. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Mwaikambo, L, Ansell, M. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chem. 1999;272: 1 108116. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Kim, D-Y, Nishiyama, Y, Kuga, S. Surface acetylation of bacterial cellulose. Cellulose. 2002;9: 3 361367. .

  • 32. Chang, W, Ma, G, Yang, D, Su, D, Song, G, Nie, J. Electrospun ultrafine composite fibers from organic-soluble chitosan and poly(ethylene oxide). J Appl Polym Sci. 2010;117: 4 21132120.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)