View More View Less
  • 1 School of Chemical Engineering and Technology, Harbin Institute of Technology, PO Box 410, Harbin 150001, China
Restricted access

Abstract

The kinetics of the thermal degradation of a new semi-aromatic polyamide containing benzoxazole unit (BO6) have been investigated by thermogravimetric analysis (TG). Thermal degradation of BO6 could be accomplished by one step. The corresponding kinetic parameters of the degradation process are determined by using Kissinger and Flynn–Wall–Ozawa methods, respectively. Coats–Redfern method is also used to discuss the probable degradation mechanism of the BO6. The results show that the activation energy obtained from Kissinger method is in good agreement with the value obtained by using Flynn–Wall–Ozawa method. The solid-state degradation mechanism of the BO6 is a decelerated R1 type (phase boundary controlled reaction one-dimensional movement).

  • 1. Huang, CC, Chang, FC. Reactive compatibilization of polymer blends of poly(butylene terephthalate) and polyamide 6,6: 2 morphological and mechanical properties. Polymer. 1997;38: 17 42874293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Colin, AF, Leslie, HR, Nick, EB. Water penetration in nylon 6,6: absorption desorption, and exchange studied by NMR microscopy. J Polym Sci A Polym Chem. 1993;31: 1 159168. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Yeong, CY, Won, HJ. Segmented block copolyetheramides based on nylon 6 and polyoxypropylene. I. Synthesis and characterization. J Appl Polym Sci. 1994;54: 5 585591. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Hu, J, He, JM, Gu, HB, Oiu, JH, Huang, YD, Sun, DZ. Synthesis and characterization on semi-aromatic polyamide containing benzoxazole unit. J Harbin Inst Technol. 2011;18: 3 95100.

    • Search Google Scholar
    • Export Citation
  • 5. Jin, WP, Sea, CO, Hac, PL, Hee, TK, Kyong, OY. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535540. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Yang, KK, Wang, XL, Wang, YZ, Wu, B, Yin, YD, Yang, B. Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). Eur Polym J. 2003;39:15671574. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Korkut, A. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim. 2010;105: 1 145150.

  • 8. Mostashari, SM, Baie, S. TG studies of synergism between red phosphorus (RP)—calcium chloride used in flame-retardancy for a cotton fabric favorable to green chemistry. J Therm Anal Calorim. 2010;99:431436. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Sovizi, MR, Anbaz, K. Kinetic investigation on thermal decomposition of organophosphorous compounds. N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic and diphenyl amidophosphate. J Therm Anal Calorim. 2010;99:593598. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Anca, MM, Lucia, O, Apostolescu, N, Moldoveanu, C. TG-FTIR study on thermal degradation in air of some new diazoamino derivatives. J Therm Anal Calorim. 2010;100:615622. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Sun, JT, Huang, YD, Gong, GF, Cao, HL. Thermal degradation kinetics of poly(methylphenylsiloxane) containing methacryloyl groups. Polym Degrad Stab. 2006;91:339346. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Nam, JD, Seferis, JC. Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal condition. J Polym Sci B Polym Phys. 1992;30:455463. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kim, SW, Chao, YS, Shim, MJ. Thermal degradation kinetics of PE by the Kissinger equation. Mater Chem Phys. 1998;52: 1 9497. .

  • 14. Popescu, C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309323. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Bonnet, E, White, RL. Species-specific isoconversion effective activation energies derived by thermogravimetry—mass spectrometry. Thermochim Acta. 1998;311: 1 8186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Mu, P, Wang, RF, Zhao, L. Studies on the non-isothermal kinetics of thermal decomposition process of the complex of europium p-methylbenzoate with 2,2′-dipyridine. Thermochim Acta. 1997;296: 1 129134. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Tomaszewicz, E, Kotfica, M. Mechanism and kinetics of thermal decomposition of nickel(II) sulfate(VI) hexahydrate. J Therm Anal Calorim. 2004;77: 1 2531. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Urbanovici, E, Popescu, C. Improved iterative version of the Coats–Redfern method to evaluate non-isothermal kinetic parameters. J Therm Anal Calorim. 1999;58:683700. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Li, LQ, Guan, CX, Zhang, AQ, Chen, DH, Qing, ZB. Thermal stabilities and thermal degradation kinetics of polyimides. Polym Degrad Stab. 2004;84: 3 369373. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Mahfouz, RM, Al-Shehri, SM, Monshi, MAS, Alhaizan, AI, El-Salam, NM. Isothermal decomposition of γ-irradiated erbium acetate. Defects Solids. 2007;162: 2 95100. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 5 0 0
Oct 2021 2 1 1
Nov 2021 2 0 0
Dec 2021 0 0 0