Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence were used for characterization of degradation of pre-aged nitrocellulose in order to elucidate the optimal route of extrapolation of rate constants from the region of the autoaccelerated reaction to lower temperatures. First order rate constants, the one characterizing the decomposition of nitrocellulose in the rate auto-accelerating region and the two constants corresponding to the slow process in induction period of nitrocellulose decomposition were shown to provide a sufficient description. The rate constants determined for several temperatures were shown to depend on the amount of char residue which is formed from pre-aged samples after the thermogravimetry runs from 40 to 550 °C.
1. Quye A , Littlejohn D, Pethrick RA, Steward RA. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym Degrad Stab. 2011. .
2. Clarkson, A, Roberston, CM. Refined calculation for determination of nitrogen in nitrocellulose by infrared spectrometry. Anal Chem. 1966;38:522 .
3. Krabbendam-LaHaye, ELM, De Klerk, WPC, Krämer, RE. The kinetic behavior and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80:495–501. .
4. Makashir, PS, Mahajan, RR, Agrawal, JJ. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45:501–509. .
5. Binke, N, Rong, L, Zhengquan, Y, Yuan, W, Rongzu, YPH, Qingsen, Y. Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose. J Therm Anal Calorim. 1999;58:403–411. .
6. Paulik, F, Paulik, J, Arnold, M. TG and TGT investigations of the decomposition of nitrocellulose under quasi-isothermal conditions. J Therm Anal Calorim. 1977;12:383 .
7. Rong, L, Binke, N, Yuan, W, Zhengquan, Y, Rongzu, H. Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999;58:369–373. .
8. Phillips, RW, Orlick, CA, Steinberger, R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 1955;59:1034–1039. .
9. Huwei, L, Ruonong, F. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Pyrolysis. 1988;14:163–167. .
10. Pourmortazavi, SM, Hosseini, SG, Rahimi Nasrabadi, M, Hajimirsadeghi, SS, Momenian, H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–1144. .
11. Lin, CP, Shu, CM. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim. 2009;95:547–552. .
12. Meincke A , Hausdorf D, Gadsden N, Baumeister M, Derrick M, Newman R, Rizzo A. Early cellulose nitrate coatings on furniture of the Company of Modern Craftsmen. In: Keneghan B, Egan L (2007) Proceedings of the conference on plastics—looking at the future and learning from the past, Victoria and Albert Museum, London. London: Archetype Publications; 2008. p. 3.
13. Shashoua, Y. Conservation of plastics, materials science, degradation and preservation. Oxford: Butterworth Heinemann and Elsevier; 2008 178.
14. Volltrauer, HN, Fontijn, A. Low-temperature pyrolysis studies by chemiluminescence techniques real time nitrocellulose and PBX decomposition. Combust Flame. 1981;41:313–324. .
15. Ashby, GE. Oxyluminescence from polymers. J Polym Sci. 1961;50:99–106. .
16. Barker, RE, Daane, JH, Rentzepis, PM. Thermochemiluminescence of polycarbonate and polypropylene. J Polym Sci A. 1965;3:2033–2045. .
17. David, DJ. Simultaneous photothermal and differential thermal analysis. Thermochim Acta. 1972;3:277–289. .
18. Schard, MP, Russell, CA. Oxyluminescence of polymers. I. General behavior of polymers. J Appl Polym Sci. 1964;8:985–995. .
19. Reich, L, Stivala, SS. Elements of polymer degradation. New York: McGraw-Hill; 1971 99.
20. Rychlá L , Rychlý J. New concepts in chemiluminescence at the evaluation of thermooxidative stability of polypropylene from isothermal and non-isothermal experiments. In: Jimenez A, Zaikov GE, editors. Polymer analysis and degradation. New York: Nova Science Publishers; 2000. p. 124.
21. Rychlý, J, Matisová-Rychlá, L, Tiemblo, P, Gomez-Elvira, J. The effect of physical parameters of isotactic polypropylene on its oxidizability measured by chemiluminescence method. Contribution to the spreading phenomenon. Polym Degrad Stab. 2001;71:253 .
22. Malíková, M, Rychlý, J, Matisová-Rychlá, L, Csomorová, K, Janigová, I, Wilde, HW. Assessing the progress of degradation of polyurethane by chemiluminescence. I. Unstabilised polyurethane. Polym Degrad Stab. 2010;95:2367–2375. .
23. Wynne, AM, Wendlandt, WW. The thermal light emission properties of alathon. 1. Effect of experimental parameters. Thermochim Acta. 1976;14:61–69. .
24. Hsueh, CH, Wendlandt, WW. Effect of some experimental parameters on the oxyluminescence curves of selected materials. Thermochim Acta. 1976;99:37–42. .
25. Wendlandt, WW. The oxyluminescence of polymers. A review. Thermochimica Acta. 1984;72:363–372. .
26. Hsueh, CH, Wendlandt, WW. The kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1986;99:41–47.
27. Wendlandt, WW. The oxyluminescence and kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1983;71:129–137. .