Authors:
Jozef Rychlý Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 11, 84541, Bratislava, Slovakia

Search for other papers by Jozef Rychlý in
Current site
Google Scholar
PubMed
Close
,
Agnes Lattuati-Derieux Centre de Recherche sur la Conservation des Collections, Muséum National d’Histoire Naturelle, MCC, CNRS, 36 rue Geoffroy-Saint-Hilaire, 75005, Paris, France

Search for other papers by Agnes Lattuati-Derieux in
Current site
Google Scholar
PubMed
Close
,
Lyda Matisová-Rychlá Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 11, 84541, Bratislava, Slovakia

Search for other papers by Lyda Matisová-Rychlá in
Current site
Google Scholar
PubMed
Close
,
Katarína Csomorová Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 11, 84541, Bratislava, Slovakia

Search for other papers by Katarína Csomorová in
Current site
Google Scholar
PubMed
Close
,
Ivica Janigová Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 11, 84541, Bratislava, Slovakia

Search for other papers by Ivica Janigová in
Current site
Google Scholar
PubMed
Close
, and
Bertrand Lavédrine Centre de Recherche sur la Conservation des Collections, Muséum National d’Histoire Naturelle, MCC, CNRS, 36 rue Geoffroy-Saint-Hilaire, 75005, Paris, France

Search for other papers by Bertrand Lavédrine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence were used for characterization of degradation of pre-aged nitrocellulose in order to elucidate the optimal route of extrapolation of rate constants from the region of the autoaccelerated reaction to lower temperatures. First order rate constants, the one characterizing the decomposition of nitrocellulose in the rate auto-accelerating region and the two constants corresponding to the slow process in induction period of nitrocellulose decomposition were shown to provide a sufficient description. The rate constants determined for several temperatures were shown to depend on the amount of char residue which is formed from pre-aged samples after the thermogravimetry runs from 40 to 550 °C.

  • 1. Quye A , Littlejohn D, Pethrick RA, Steward RA. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym Degrad Stab. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Clarkson, A, Roberston, CM. Refined calculation for determination of nitrogen in nitrocellulose by infrared spectrometry. Anal Chem. 1966;38:522 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Krabbendam-LaHaye, ELM, De Klerk, WPC, Krämer, RE. The kinetic behavior and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80:495501. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Makashir, PS, Mahajan, RR, Agrawal, JJ. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45:501509. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Binke, N, Rong, L, Zhengquan, Y, Yuan, W, Rongzu, YPH, Qingsen, Y. Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose. J Therm Anal Calorim. 1999;58:403411. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Paulik, F, Paulik, J, Arnold, M. TG and TGT investigations of the decomposition of nitrocellulose under quasi-isothermal conditions. J Therm Anal Calorim. 1977;12:383 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Rong, L, Binke, N, Yuan, W, Zhengquan, Y, Rongzu, H. Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999;58:369373. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Phillips, RW, Orlick, CA, Steinberger, R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 1955;59:10341039. .

  • 9. Huwei, L, Ruonong, F. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Pyrolysis. 1988;14:163167. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Pourmortazavi, SM, Hosseini, SG, Rahimi Nasrabadi, M, Hajimirsadeghi, SS, Momenian, H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:11411144. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Lin, CP, Shu, CM. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim. 2009;95:547552. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Meincke A , Hausdorf D, Gadsden N, Baumeister M, Derrick M, Newman R, Rizzo A. Early cellulose nitrate coatings on furniture of the Company of Modern Craftsmen. In: Keneghan B, Egan L (2007) Proceedings of the conference on plastics—looking at the future and learning from the past, Victoria and Albert Museum, London. London: Archetype Publications; 2008. p. 3.

    • Search Google Scholar
    • Export Citation
  • 13. Shashoua, Y. Conservation of plastics, materials science, degradation and preservation. Oxford: Butterworth Heinemann and Elsevier; 2008 178.

    • Search Google Scholar
    • Export Citation
  • 14. Volltrauer, HN, Fontijn, A. Low-temperature pyrolysis studies by chemiluminescence techniques real time nitrocellulose and PBX decomposition. Combust Flame. 1981;41:313324. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ashby, GE. Oxyluminescence from polymers. J Polym Sci. 1961;50:99106. .

  • 16. Barker, RE, Daane, JH, Rentzepis, PM. Thermochemiluminescence of polycarbonate and polypropylene. J Polym Sci A. 1965;3:20332045. .

  • 17. David, DJ. Simultaneous photothermal and differential thermal analysis. Thermochim Acta. 1972;3:277289. .

  • 18. Schard, MP, Russell, CA. Oxyluminescence of polymers. I. General behavior of polymers. J Appl Polym Sci. 1964;8:985995. .

  • 19. Reich, L, Stivala, SS. Elements of polymer degradation. New York: McGraw-Hill; 1971 99.

  • 20. Rychlá L , Rychlý J. New concepts in chemiluminescence at the evaluation of thermooxidative stability of polypropylene from isothermal and non-isothermal experiments. In: Jimenez A, Zaikov GE, editors. Polymer analysis and degradation. New York: Nova Science Publishers; 2000. p. 124.

    • Search Google Scholar
    • Export Citation
  • 21. Rychlý, J, Matisová-Rychlá, L, Tiemblo, P, Gomez-Elvira, J. The effect of physical parameters of isotactic polypropylene on its oxidizability measured by chemiluminescence method. Contribution to the spreading phenomenon. Polym Degrad Stab. 2001;71:253 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Malíková, M, Rychlý, J, Matisová-Rychlá, L, Csomorová, K, Janigová, I, Wilde, HW. Assessing the progress of degradation of polyurethane by chemiluminescence. I. Unstabilised polyurethane. Polym Degrad Stab. 2010;95:23672375. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Wynne, AM, Wendlandt, WW. The thermal light emission properties of alathon. 1. Effect of experimental parameters. Thermochim Acta. 1976;14:6169. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Hsueh, CH, Wendlandt, WW. Effect of some experimental parameters on the oxyluminescence curves of selected materials. Thermochim Acta. 1976;99:3742. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Wendlandt, WW. The oxyluminescence of polymers. A review. Thermochimica Acta. 1984;72:363372. .

  • 26. Hsueh, CH, Wendlandt, WW. The kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1986;99:4147.

  • 27. Wendlandt, WW. The oxyluminescence and kinetics of oxyluminescence of selected polymers. Thermochim Acta. 1983;71:129137. .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 46 0 0
Apr 2024 11 0 0
May 2024 28 0 0
Jun 2024 27 0 0
Jul 2024 20 0 0
Aug 2024 35 0 0
Sep 2024 4 0 0