View More View Less
  • 1 Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
Restricted access

Abstract

Wood, one of the flammable material, was treated with aqueous solution of guanidine nitrate (GUN) and also with small amount of bases like N,N-dimethylformamide, 4-dimethylaminopyridine, pyridine, and triethylamine in the treating solution. These bases catalyze the impregnation of GUN as indicated by increase in mass gain percentage, elemental analysis, and scanning electron microscopy. To study their thermal behavior, dynamic thermogravimetry (TG) and derivative thermogravimetry (DTG) analysis under nitrogen atmosphere have been applied from ambient temperature to 973 K on all samples, at multiple linear heating rates 2.5, 5, 10, and 20 K min−1. Non-isothermal, “model free” iso-conversional multiple heating rate methods, Ozawa–Flynn–Wall (O–F–W) and modified Coats–Redfern are used to calculate activation energy of samples. The activation energy of samples is found in the range 109–208 kJ mol−1. Thermal parameters like overall pyrolysis duration, maximum mass loss rate, corresponding to DTG peak maximum and percentage char yield calculated at 873 K from TG curves are used to appraise the flammability of samples. Also, flammability of samples is determined by reliable methods namely limiting oxygen index and underwriters laboratories 94 (UL 94) test. The aforesaid study indicates that base catalyzed impregnated samples are less flammable than those impregnated with only GUN and untreated ones.

  • 1. Horvath, AL. Solubility of structurally complicated materials: I wood. J Phys Chem Ref Data. 2006;35:7792. .

  • 2. Kandola, BK, Horrocks, AR, Price, D, Coleman, GV. Flame retardant treatments on cellulose and their influence on the mechanism of cellulose pyrolysis. Polym Rev. 1996;36:721794.

    • Search Google Scholar
    • Export Citation
  • 3. Summary fire statistics, United Kingdom, 2006. http://www.communities.gov.uk. 2008.

  • 4. Gao, M, Sun, CY, Wang, CX. Thermal degradation of wood treated with flame retardants. J Therm Anal Calorim. 2006;85:765769. .

  • 5. Blasi, CD, Branca, C, Galgano, A. Thermal and catalytic decomposition of wood impregnated with sulphur-and phosphorous-containing ammonium salts. Polym Degrad Stab. 2008;93:335346. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Luneva, NK, Petrovskaya, LI. Performance of intumescent fire retardant for wood. Russ J Appl Chem. 2008;81:704707. .

  • 7. Liodakis, S, Vorisis, D, Agiovlasitis, IP. Testing the retardancy effect of various inorganic chemicals on smoldering combustion of Pinus halepenis needles. Thermochem Acta. 2006;444:157165. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Kulakov, VA, Zhabankov, RG, Yurchenko, VM. IR spectroscopic study of cellulose treated by guanidine and urea salt solutions. J Appl Spectrosc. 1987;47:797801. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Gao, M, Sun, C, Zhu, K. Thermal degradation of wood treated with guanidine compounds in air. J Therm Anal Calorim. 2004;75:221232. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Gao, M, Ling, B, Yang, SS, Zhao, M. Flame retardance of wood treated with guanidine compounds characterized by thermal degradation behavior. J Anal Appl Pyrolysis. 2005;73:151156. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Ellis, WD, Rowell, RM, LeVan, SL, Susott, RA. Thermal degradation properties of wood reacted with diethylchlorophosphate or phenylphosphonic dichloride as potential flame retardants. Wood Fiber Sci. 1987;19:439445.

    • Search Google Scholar
    • Export Citation
  • 12. Flynn, JH, Wall, LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand Sect A Phys Chem. 1966;A70:487523.

  • 13. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886. .

  • 14. Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, AK, et al. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Yao, F, Wu, Q, Lei, Y, Guo, W, Xu, Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thernogravimetric analysis. Poly Degrad Stab. 2008;93:9098. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Jain, RK, Lal, K, Bhatnagar, HL. Thermal degradation of cellulose and its phosphorylated products in air and nitrogen. J Appl Polym Sci. 1985;30:897914. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Antal, MJ, Varhegyi, G. Cellulose pyrolysis kinetics—the current state knowledge. Ind Eng Chem Res. 1995;34:703717. .

  • 18. Liodakis, S, Antonopoulos, I, Kakardakis, T. Evaluating the use of minerals as forest fire retardants. Fire Safety J. 2010;45:98105. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Liodakis, S, Kakardakis, T, Tzortzakou, S, Tsapara, V. How to measure the particle ignitability of forest species by TG and LOI. Thermochem Acta. 2008;477:1620. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Cavallaro, G, Donato, DI, Lazzara, G, Milioto, S. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim. 2011;104:451457. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Dahiya, JB, Kumar, K, Muller-Hagedorn, M, Bockhorn, H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57:722729. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Cabrales, L, Abidi, N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485491. .

  • 23. Corradini, E, Teixeira, EM, Paladin, PD, Agnelli, JA, Silva, ORRF, Mattoso, LHC. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:415419. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Lin, YC, Cho, J, Tompsett, GA, Westmoreland, PR, Huber, GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:2009720107. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Arora, S, Kumar, M, Dubey, GP. Thermal decomposition kinetics of rice husk: activation energy with dynamic thermogravimetric analysis. J Energy Inst. 2009;82:138143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Arora, S, Bagoria, R, Kumar, M. Effect of alpha-tocopherol (vitamin E) on the thermal degradation behaviour of edible oils. J Therm Anal Calorim. 2010;102:375381. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)