View More View Less
  • 1 Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
Restricted access

Abstract

Traditional methods to measure and survey the productivity of oil wells mainly consisted of using test-separator units with expensive instrumental, mechanical, electrical, piping, and safety devices along with technical and protective inspections, repair and operation services, facilities, and infrastructures. Their inherent limitations are time and cost consuming, uncertainty of well isolation in test separator, and need to close the co-line wells, which are diminished using multivariate thermal well testing. In this study, an alternative method is presented using multivariate regression on thermal analysis data. The objective of this study, which covered three distinctive major fields of statistics, thermal analysis, and well testing, is predicting the accurate productivity of oil wells using a single sample point at the blend oil pipeline. This method is based in performing multivariate regression of thermogravimetric data obtained from the samples of Iranian offshore oil wells. The results revealed that the used model appropriate for crude oil blends, which thermal traces significantly differ from each other. The calculated error function corrected the blend equation by considering the eutectic points and catalytic pyrolysis in lower and higher temperatures, respectively. The model predicted the accurate productivity of oil wells in real samples of blend oil pipeline.

  • 1. Thorn, R, Johansen, GA, Hammer, EA. Recent developments in three-phase flow measurement. Meas Sci Technol. 1997;8:691701. .

  • 2. Wang, H, Priestman, GH, Beck, SBM, Boucher, RF. A remote measuring flow meter for petroleum and other industrial applications. Meas Sci Technol. 1998;9:779789. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Bostrom, NW, Griffin, DD, Kleinberg, RL, Liang, KK. Ultrasonic bubble point sensor for petroleum fluids in remote and hostile environments. Meas Sci Technol. 2005;16:23362343. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Bernardie, EB, Dubrunfaut, O, Badot, JC, Fourrier-Lamer, A, Villard, E, David, PY, Jannier, B, Grosjean, N, Lance, M. Low (10–800MHz) and high (40GHz) frequency probes applied to petroleum multiphase flow characterization. Meas Sci Technol. 2008;19:055602055608. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Tan, C, Dong, F. Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil–water viscosity ratio. Meas Sci Technol. 2010;21:045403045414. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Wang, J, Li, F, Gardner, RP. On the use of prompt gamma-ray neutron activation analysis for determining phase amounts in multiphase flow. Meas Sci Technol. 2008;19:094005094006. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Hilland, J. Simple sensor system for measuring the dielectric properties of saline solutions. Meas Sci Technol. 1997;8:901910. .

  • 8. Zhao B , (2011) Numerical simulation for the temperature changing rule of the crude oil in a storage tank based on the wavelet finite element method. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Kök MV , (2010) Thermo-oxidative reactions of crude oils. J Therm Anal Calorim. .

  • 10. Kök, MV. Effect of pressure and particle size on the thermal cracking of light crude oils in sandstone matrix. J Therm Anal Calorim. 2009;97:403407. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Streibel, T, Geißler, R, Saraji-Bozorgzad, M, Sklorz, M, Kaisersberger, E, Denner, T, Zimmermann, R. Evolved gas analysis (EGA) in TG and DSC with single photon ionisation mass spectrometry (SPI-MS): molecular organic signatures from pyrolysis of soft and hard wood, coal, crude oil and ABS polymer. J Therm Anal Calorim. 2009;96:795804. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Geißler, R, Saraji-Bozorgzad, M, Streibel, T, Kaisersberger, E, Denner, T, Zimmermann, R. Investigation of different crude oils applying thermal analysis/mass spectrometry with soft photoionisation. J Therm Anal Calorim. 2009;96:813820. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kök, MV, Gundogar, AS. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry. J Therm Anal Calorim. 2010;99:779783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Streibel, T, Fendt, A, Geißler, R, Kaisersberger, E, Denner, T, Zimmermann, R. Thermal analysis/mass spectrometry using soft photo-ionisation for the investigation of biomass and mineral oils. J Therm Anal Calorim. 2009;97:615619. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Kök, MV. Influence of reservoir rock composition on the combustion kinetics of crude oil. J Therm Anal Calorim. 2009;97:397401. .

  • 16. Fulem, M, Becerra, M, Hasan, MDA, Zhao, B, Shaw, JM. Phase behaviour of Maya crude oil based on calorimetry and rheometry. Fluid Phase Equilib. 2008;272:3241. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Gjurova, KM, Ljubchev, LA, Zagortcheva, MK. Preliminary quantitative determination of petroleum and petroleum products in contaminated soils by using dynamic thermogravimetry. Thermochim Acta. 1999;335:5561. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Shishkin, YL. A new quick method of determining the group hydrocarbon composition of crude oils and oil heavy residues based on their oxidative distillation (cracking) as monitored by differential scanning calorimetry and thermogravimetry. Thermochim Acta. 2006;440:156165. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Ferrasse, JH, Chavez, S, Arlabosse, P, Dupuy, N. Chemometrics as a tool for the analysis of evolved gas during the thermal treatment of sewage sludge using coupled TG–FTIR. Thermochim Acta. 2003;404:97108. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Statheropoulos, M, Mikedi, K, Tzamtzis, N, Pappa, A. Application of factor analysis for resolving thermogravimetric–mass spectrometric analysis spectra. Anal Chim Acta. 2002;461:215227. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Smidt, E, Böhm, K, Tintner, J. Application of various statistical methods to evaluate thermo-analytical data of mechanically–biologically treated municipal solid waste. Thermochim Acta. 2010;501:9197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Miltyk, W, Antonowicz, E, Komsta, L. Recognition of tablet content by chemometric processing of differential scanning calorimetry curves—an acetaminophen example. Thermochim Acta. 2010;507–508:146149. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Serra, R, Sempere, J, Nomen, R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:3745. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Chrissafis, K. Kinetics of thermal degradation of polymers: complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273283. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706. .

  • 26. Alvarez, VA, Ruseckaite, RA, Vazquez, A. Kinetic analysis of thermal degradation in poly(ethylene–vinyl alcohol) copolymers. J App Poly Sci. 2003;90:31573163. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Farjas, J, Roura, P. Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater. 2006;54:55735579. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Avrami, M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:11031112. .

  • 29. Augis, JA, Bennett, JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283292. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886. .

  • 31. Perez-Maqueda, LA, Sanchez-Jimenez, PE, Criado, JM. Kinetic analysis of solid-state reactions: precision of the activation energy calculated by integral methods. Int J Chem Kinet. 2005;37:658666. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Horowitz, HH, Metzger, G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:14641468. .

  • 33. Cozzani, V, Petarca, L, Tognotti, L. Devolatilization and pyrolysis of refuse derived fuels: characterization and kinetic modelling by a thermogravimetric and calorimetric approach. Fuel. 1995;74:903912. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Raveendran, K, Ganesh, A, Khilar, KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987998. .

  • 35. Cozzani, V, Stoppato, G. A new method to determine the composition of biomass by thermogravimetric analysis. Can J Chem Eng. 1997;75:127133. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Rajeswara, RT, Sharma, A. Pyrolysis rates of biomass materials. Energy. 1998;23:973978. .