View More View Less
  • 1 Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
  • | 2 Mineralogy and Petrology Section, Australian Museum, 6 College St., Sydney, NSW, 2010, Australia
Restricted access

Abstract

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products of the thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139 °C and the dehydroxylation occurs over the temperature range 200–700 °C with loss of the OH units. The critical temperature for OH loss is around 416 °C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788 °C. This study shows the mineral is unstable above 139 °C. This temperature is well above the temperature in the caves of 15 °C maximum. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.

  • 1. Dumitras, D-G, Marincea, S, Bilal, E, Hatert, F. Apatite-(CaOH) in the fossil bat guano deposit from the “dry” Cioclovina Cave, Sureanu Mountains, Romania. Can Miner. 2008;46:431445. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Hill CA . Cave Minerals, Huntsville: National Speleological Society; 1976.

  • 3. Moravansky, D, Orvosova, M. Recent knowledge about the cave minerals of Slovakia. Miner Slov. 2007;39:203216.

  • 4. Moravansky, D, Zenis, P. Guano minerals in some caves of Western and Central Slovakia. Miner Slov. 1997;29:6172.

  • 5. Onac, BP, Mylroie, JE, White, WB. Mineralogy of cave deposits on San Salvador Island. Bahamas Carbonates Evaporites. 2001;16:816. .

  • 6. White WB . Cave minerals and speleothems. In: Ford DT, Cullingford CHD, editors. The science of speleology. London: Academic Press; 1976. p. 267327.

    • Search Google Scholar
    • Export Citation
  • 7. Mingaye, JCH. Phosphatic deposits in the Jenolan caves. N S W Rep Aust Assoc. 1898;7:111116.

  • 8. Mingaye, JCH. Phosphatic deposits in the Jenolan caves, New South Wales. Rec Geol Surv N S W. 1899;6:111116.

  • 9. Sussmilch, CA, Stone, WG. Geology of the Jenolan caves district. J Proc R Soc N S W. 1916;49:332384.

  • 10. Osborne, RAL, Zwingmann, H, Pogson, RE, Colchester, DM. Carboniferous clay deposits from Jenolan caves, New South Wales: implications for timing of speleogenesis and regional geology. Aust J Earth Sci. 2006;53:377405. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Blanchard, FN. Thermal analysis of crandallite. Q J Fla Acad Sci. 1971;34:19.

  • 12. Francisco, EaB, Prochnow, LI, Motta De Toledo, MC, Ferrari, VC, Luis De Jesus, S. Thermal treatment of aluminous phosphates of the crandallite group and its effect on phosphorus solubility. Sci Agric (Piracicaba, Brazil). 2007;64:269274.

    • Search Google Scholar
    • Export Citation
  • 13. Guardani, R. Thermal transformations and solubility of aluminum phosphates from the states of Para and Maranhao (Brazil). Fertilizantes. 1987;9:610.

    • Search Google Scholar
    • Export Citation
  • 14. Ferrari, VC, Motta De Toledo, MC, Atencio, D. Gorceixite from Catalao, Goias, Brazil: rietveld crystal structure refinement, Geologia USP. Ser Cient. 2007;7:2536.

    • Search Google Scholar
    • Export Citation
  • 15. Guardani, R, Valarelli, JV, Cekinski, E, Pereira, SCC. Use of alkaline rocks from Pocos de Caldas (Brazil) and phosphogypsum in the production of potassium fertilizer and sulfur dioxide. Fertilizantes. 1985;7:48.

    • Search Google Scholar
    • Export Citation
  • 16. Cejka, J, Sejkora, J, Bahfenne, S, Palmer, SJ, Plasil, J, Frost, RL. Raman spectroscopy of hydrogen-arsenate group (AsO3OH) in solid-state compounds: cobalt mineral phase burgessite Co2(H2O)4[AsO3OH]2·H2O. J Raman Spectrosc. 2011;42:214218. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Frost, RL, Palmer, SJ, Kristof, J, Horvath, E. Dynamic and controlled rate thermal analysis of halotrichite. J Therm Anal Calorim. 2010;99:501507. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Frost, RL, Palmer, SJ, Kristof, J, Horvath, E. Thermoanalytical studies of silver and lead jarosites and their solid solutions. J Therm Anal Calorim. 2010;101:7379. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Grand, L-M, Palmer, SJ, Frost, RL. Synthesis and thermal stability of hydrotalcites containing manganese. J Therm Anal Calorim. 2010;100:981985. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Grand, L-M, Palmer, SJ, Frost, RL. Synthesis and thermal stability of hydrotalcites based upon gallium. J Therm Anal Calorim. 2010;101:195198. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Kristof, J, Frost, RL, Palmer, SJ, Horvath, E, Jakab, E. Thermoanalytical studies of natural potassium, sodium and ammonium alunites. J Therm Anal Calorim. 2010;100:961966. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Palmer, SJ, Frost, RL. Thermal decomposition of Bayer precipitates formed at varying temperatures. J Therm Anal Calorim. 2010;100:2732. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Tao, Q, He, H, Frost, RL, Yuan, P, Zhu, J. Thermal decomposition of silylated layered double hydroxides. J Therm Anal Calorim. 2010;101:153159. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Frost, RL, Hales, MC, Martens, WN. Thermogravimetric analysis of selected group (II) carbonate minerals, implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:9991005. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Frost, RL, Kristof, J, Horvath, E. Controlled rate thermal analysis of sepiolite. J Therm Anal Calorim. 2009;98:423428. .

  • 26. Yang, J, Frost, RL, Martens, WN. Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide. J Therm Anal Calorim. 2010;100:109116. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Anthony, JW, Bideaux, RA, Bladh, KW, Nichols, MC. Handbook of mineralogy. Tuscon: Mineral Data Publishing; 2000.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 1 0 0
Jun 2021 1 0 0
Jul 2021 3 0 0
Aug 2021 1 1 0
Sep 2021 3 0 0
Oct 2021 0 0 0