View More View Less
  • 1 Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
Restricted access

Abstract

Phase change materials (PCM) have been extensively scrutinized for their widely application in thermal energy storage (TES). Paraffin was considered to be one of the most prospective PCMs with perfect properties. However, lower thermal conductivity hinders the further application. In this letter, we experimentally investigate the thermal conductivity and energy storage of composites consisting of paraffin and micron-size graphite flakes (MSGFs). The results strongly suggested that the thermal conductivity enhances enormously with increasing the mass fraction of the MSGFs. The formation of heat flow network is the key factor for high thermal conductivity in this case. Meanwhile, compared to that of the thermal conductivity, the latent heat capacity, the melting temperature, and the freezing temperature of the composites present negligible change with increasing the concentration of the MSGFs. The paraffin-based composites have great potential for energy storage application with optimal fraction of the MSGFs.

  • 1. Kuznik, F, David, D, Johannes, K, Roux, JJ. A review on phase change materials integrated in building walls. Renew Sust Energ Rev. 2011;15: 1 379391. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Nomura, T, Okinaka, N, Akiyama, T. Technology of latent heat storage for high temperature application. A review. Isij Int. 2010;50: 9 12291239. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Ren N , Wu YT, Wang T, Ma CF. Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Jegadheeswaran, S, Pohekar, SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sust Energ Rev. 2009;13: 9 22252244. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Sharma, A, Tyagi, VV, Chen, CR, Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009;13: 2 318345. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Luyt, AS, Krupa, I. Phase change materials formed by uv curable epoxy matrix and Fischer-Tropsch paraffin wax. Energy Convers Manag. 2009;50: 1 5761. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Zhong, YJ, Li, SZ, Wei, XH, Liu, ZJ, Guo, QG, Shi, JL, Liu, L. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon. 2010;48: 1 300304. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Sari, A. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage. 2004;45: 13–14 20332042. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Zeng, JL, Sun, LX, Xu, F, Tan, ZC, Zhang, ZH, Zhang, J, Zhang, T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87: 2 369373. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Ai, DS, Su, LZ, Gao, Z, Deng, CS, Dai, XM. Study of ZrO2 nanopowders based stearic acid phase change materials. Particuology. 2010;8: 4 394397. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Wu, SY, Zhu, DS, Zhang, XR, Huang, J. 2010 Preparation and melting/freezing characteristics of Cu/Paraffin nanofluid as phase-change material (PCM). Energy Fuels. 24:18941898. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Khodadadi, JM, Hosseinizadeh, SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transfer. 2007;34: 5 534543. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Ramezanzadeh, B, Attar, M, Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103: 2 731739. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Wu, SY, Zhu, DS, Li, XF, Li, H, Lei, JX. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta. 2009;483: 1–2 7377. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Zeng, JL, Cao, Z, Yang, DW, Xu, F, Sun, LX, Zhang, XF, Zhang, L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95: 2 507512. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Babu, K, Kumar, TSP. Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids. Int J Heat Mass Transfer. 2011;54: 1–3 106117. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Zhao, JG, Guo, QG, Gao, XQ, Wei, XH, Shi, JL, Yao, LZ, Liu, L. Preparation of paraffin/expanded graphite phase change composites for thermal storage. New Carbon Mater. 2009;24: 2 114118.

    • Search Google Scholar
    • Export Citation
  • 18. Zhong, YJ, Guo, QG, Li, SZ, Shi, JL, Liu, L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells. 2010;94: 6 10111014. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Sari, A, Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27: 8–9 12711277. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Hummers, WS, Offeman, RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80: 6 1339 .

  • 21. Wei, T, Fan, ZJ, Luo, GL, Zheng, C, Xie, DS. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon. 2009;47: 1 337339. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Anon . The rise and rise of graphene. Nat Nanotechnol. 2010;5: 11 755 .

  • 23. Kim, KS, Zhao, Y, Jang, H, Lee, SY, Kim, JM, Ahn, JH, Kim, P, Choi, JY, Hong, BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457: 7230 706710. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Garg, J, Poudel, B, Chiesa, M, Gordon, JB, Ma, JJ, Wang, JB, Ren, ZF, Kang, YT, Ohtani, H, Nanda, J, McKinley, GH, Chen, G. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 2008;103: 7 074301 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Maxwell, CJ. Electricity and magnetism. Clarendon: Oxford; 1873.

  • 26. Sun, K, Stroscio, MA, Dutta, M. Graphite c-axis thermal conductivity. Superlattices Microstruct. 2009;45: 2 6064. .

  • 27. Gao, JW, Zheng, RT, Ohtani, H, Zhu, DS, Chen, G. Experimental investigation of heat conduction mechanisms in nanofluids clue on clustering. Nano Lett. 2009;9: 12 41284132. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Wang, J, Xie, H, Xin, Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488: 1–2 3942. .

    • Crossref
    • Search Google Scholar
    • Export Citation