Bismuth mixed oxide powders were prepared by oxalate coprecipitation process. The thermal decomposition behaviour of the coprecipitate precursors has been followed by thermal analysis (TG-DTA) and FTIR spectroscopy. During the decomposition of the precursor, several intermediates species were detected and a mechanism of formation of mixed oxide by this method is proposed. After the thermal treatment, the precursor obtained of suggested formula Ca3[Bi6O6(C2O4)4(OH)3NO3]0.5H2O, has led to the formation of CaBi2O4 at shorter reaction time than the traditional ceramic method. In order to consolidate the results, the coprecipitation in absence of oxalic precipitant under the same conditions was examined. XRD and scanning electron spectroscopy were used to study particles sizes and morphology.
1. Durrani, SK, Qureshi, AH, Qayyum, S, Arif, M. Development of superconducting phases in BSCCO and Ba-BSCCO by sol spray process. J Therm Anal Calorim. 2009;95:87–91. .
2. Arshad, M, Qureshi, AH, Masud, K, Qazi, NK. Production of BSCCO bulk high Tc superconductors by sol-gel method and their characterization by FTIR and XRD techniques. J Therm Anal Calorim. 2007;89:595–600. .
3. Ono, T, Utsumi, K, Tsukamoto, S, Tamaru, H, Kataoka, M, Noguchi, F. Roles of bulk γ(L)-Bi2MoO6 and surface β-Bi2Mo2O9 in the selective catalytic oxidation of C3H6. J Mol Catal. 2010;318:94–100. .
4. He, Y, Wu, Y, Yi, X, Weng, W, Wan, H. Promotive effect of Bi component on propane partial oxidation over MoBiTeOx/SiO2 catalysts. J Mol Catal. 2010;331:1–6. .
5. Zheng, Y, Duan, F, Chen, M, Xie, Y. Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed. J Mol Catal. 2010;317:34–40. .
6. Liu, Z, Qi, Y, Lu, C. High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. J Mater Sci Mater Electron. 2010;21:380–384. .
7. van der Linden, EG, Luiz Fernando, BM, Eloisa Medeiros, M. Evaluation of synthetic routes to pigmentary grade bismuth vanadate. Dyes Pigm. 2011;90:36–40. .
8. Šulcová, P, Trojan, M. Thermal analysis of the Bi2O3-Y2O3-ZrO2 pigments. J Therm Anal Calorim. 2008;93:795–798. .
9. Becchetti, FD, Lister, PM, Thorn, CE. Bismuth germanate scintillator as a fast high-energy ion detector. Nucl Instrum Methods Phys Res. 1984;225:280–282. .
10. de Jesus, FAA, da Silva, RS, Macedo, ZS. Synthesis of Bi4Ge3O12 ceramic scintillators by the polymeric precursor method. J Therm Anal Calorim. 2010;100:537–541. .
11. Poghossian, AS, Abovian, HV, Avakian, PB, Mkrtchian, SH, Haroutunian, VM. Bismuth ferrites: new materials for semiconductor gas sensors. Sens Actuators B Chem. 1991;4:545–549. .
12. Shuk, P, Wiemhöfer, HD, Guth, U, Göpel, W, Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics. 1996;89:179–196. .
13. Turkoglu, O, Belenli, I. Electrical conductivity of g-Bi2O3-V2O5 solid solution. J Therm Anal Calorim. 2003;73:1001–1012. .
14. Horn W , Földvari I, Denz C. Holographic data storage in photorefractive bismuth tellurite. J Phys D Appl Phys. . 2008. .
15. Conflant P , Bovin JC, Thomas D. Le Diagramme des Phases Solides du Systeme Bi2O3-CaO. J Solid State Chem. 1976;18:133–40.
16. Roth, RS, Hwang, NM, Rawn, CJ, Burton, BP, Ritter, JJ. Phase equilibria in the systems CaO–CuO and CaO–Bi2O3. J Am Ceram Soc. 1991;74:2148–2151. .
17. Vstavskaya, EY, Zuev, AY, Cherepanov, VA. The phase diagram of the bismuth-calcium oxide system. Mater Res Bull. 1994;29:1233–1238. .
18. Hallstedt, B, Rissod, D, Gaukler, LJ. Thermodynamic assessment of the bismuth–calcium–oxygen oxide system. J Am Ceram Soc. 1997;80:2629–2636. .
19. Ubaldini, A, Artini, C, Costa, GA, Carnasciali, MM, Masini, R. Synthesis and thermal decomposition of mixed Gd–Nd oxalates. J Therm Anal Calorim. 2008;91:797–803. .
20. Maeda, H, Tanaka, Y, Fukutomi, M, Asano, T. A new high-Tc oxide superconductor without a rare earth element. Jpn J Appl Phys. 1988;27:209–210. .
21. Nielsen, KA. Thermal analysis in the research and development of advanced technical ceramics. Thermochim Acta. 1991;175:13–24. .
22. Monnereau, O, Tortet, L, Llewellyn, P, Rouquerol, F, Vacquier, G. Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide?. Solid State Ionics. 2003;157:163–169. .
23. Kitaguchi, H, Shitani, F, Egi, T, Oda, K, Takada, J, Osaka, A, Miura, NY, Ikeda, Y, Tanako, M. Preparation of the high-Tc phase in the Bi-Pb-Sr-Ca-Cu-O system. Mol Cryst Liq Cryst. 1990;84:129–133.
24. Carp, O, Patron, L, Marinescu, G, Pascu, G, Budrugeac, P, et al. Copper-iron oxides obtained by thermal decomposition of oxalic coordination compounds. J Therm Anal Calorim. 2003;72:263–270. .
25. Deb, N. Thermal Investigations of M[La(C2O4)3]·xH2O (M=Cr(III) and Co(III)). J Therm Anal Calorim. 2002;63:699–712. .
26. Marbach, G, Stotz, S, Klee, M, De Vries, JWC. Superconductivity in Bi-Sr-Ca-Cu-O bulk samples made by thermal decomposition of metal oxalates. Phys C. 1989;161: 1 111–120. .
27. Mansori, M, Satre, P, Breandon, C, Roubin, M, Sebaoun, A. Elaboration et caractérisation de cuprates de bismuth supraconducteurs. Ann Chim. 1993;18:537–547.
28. Shei, CY, Liu, RS, Chang, CT, Wu, PT. Coprecipitation process for the preparation of superconductive Bi-Sr-Ca-Cu oxides. Mater Lett. 1990;9:105–108. .
29. Marta, L, Zaharescu, M, Ciontea, L, Petrisorc, T. Chemical route to the synthesis of superconducting bismuth oxide system. Appl Supercond. 1993;1:677–691. .
30. Zhang, Y, Fang, Z, Muhammed, M, Rao, KV, Skumryev, V, Medelius, H, Costa, JL. The synthesis of superconducting bismuth compounds via oxalate coprecipitation. Phys C. 1989;157:108–114. .
31. Spencer, ND. Alkali-metal-free carbonate coprecipitation: an effective synthetic route to bismuth-based oxide superconductors. Chem Mater. 1990;2:708–712. .
32. Zhang, Y, Muhammed, M, Wang, L, Nogues, J, Rao, KV. Synthesis of superconducting Pb/Sb doped BiSrCaCuO compounds via oxalate coprecipitation. Mat Chem Phys. 1992;30:153–159. .
33. Chiang, C, Shei, CY, Huang, YT, Lee, WH, Wu, PT. Preparation of high purity 110K phase in the (Bi, Pb)-Sr-Ca-Cu-O superconductor system using a solution method. Phys C. 1990;170:383–387. .
34. Chuanbin, M, Zehua, D, Lian, Z. Modified coprecipitation process of synthesizing Bi-system superconductor precursor powder and its stoichiometry. Sci China. 1996;E39:181–190.
35. Popa, M, Totovana, A, Popescu, L, Dragan, N, Zaharescu, M. Reactivity of the Bi, Sr, Ca, Cu oxalate powders used in BSCCO preparation. J Eur Ceram Soc. 1998;18:1265–1271. .
36. Nakamoto, K. IR spectra of inorganic and coordination compounds. 2 New York: Wiley-Interscience; 1970.
37. Reddy, VB, Mehrotra, PN. IR and thermal studies on lanthanum zirconyl oxalate. J Therm Anal Calorim. 1981;21:21–26. .
38. Nissen, DA. The thermal decomposition of plutonium (IV) oxalate hexahydrate. J Therm Anal Calorim. 1980;18:99–109. .
39. Balboul, BAA, El-Roudi, AM, Samir, E, Othman, AG. Non-isothermal studies of the decomposition course of lanthanum oxalate decahydrate. Thermochim Acta. 2002;387:109–114. .
40. Mehring, M. From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Cood Chem Rev. 2007;251:974–1006. .
41. Yang, N, Sun, H. Biocoordination chemistry of bismuth: recent advances. Cood Chem Rev. 2007;251:2354–2366. .
42. Suzuki, H, Matano, Y. Organobismuth chemistry. Amsterdam: Elsevier; 2001.
43. Luckay, R, Cukrowski, I, Mashishi, J, Reibenspies, JH, Bond, AH, Rogers, RD, Hancock, RD. Synthesis, stability and structure of the complex of bismuth(III) with the nitrogen-donor macrocycle 1,4,7,10 tetraazacyclododecane. The role of the lone pair on bismuth(III) and lead (II) in determining co-ordination geometry. J Chem Soc Dalton Trans. 1997;26:901–908. .
44. Stavila, V, Davidovich, RL, Gulea, A, Whirmire, KH. Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: chemistry and structure. Coord Chem Rev. 2006;250:2782–2810. .
45. Mehring, M, Mansfeld, D, Paalasmaa, S, Schürmann, M. Polynuclear bismuth-oxo clusters: insight into the formation process of a metal oxide. Chem Eur J. 2006;12:1767–1781. .
46. Mansfeld, D, Mehring, M, Schürmann, M. From a monomeric bismuth silanolate to a molecular bismuth oxo cluster: [Bi22O26(OSiMe2 tBu)14]. Angew Chem Int Ed. 2005;44:245–249. .
47. Tytko, KH. Isopolyoxokationen—Metallkationen in wäßriger Lösung. Chem unserer Zeit. 1979;13:184–194. .
48. Lazarini, F. The crystal structure of a bismuth basic nitrate, [Bi6O5(OH)3](NO3)3.3H2O. Acta Crystallogr B. 1978;34:3169–3173. .
49. Lazarini, F. Bismuth basic nitrate, [Bi6(H2O)(NO3)O4(OH)4](NO3)5. Acta Crystallogr B. 1979;35:448–450. .
50. Henry, N, Mentre, O, Abraham, F, MacLean, EJ, Roussel, P. Polycationic disorder in [Bi6O4(OH)4](NO3)6: structure determination using synchrotron radiation and microcrystal X-ray diffraction. J Solid State Chem. 2006;179:3087–3094. .
51. Christensen, AN, Chevallier, MA, Skibsted, J, Iversen, BB. Synthesis and characterization of basic bismuth(III) nitrates. J Chem Soc Dalton Trans. 2000;29:265–270. .
52. Sundvall, B. Crystal and molecular structure of tetraoxotetrahydroxobismuth(III) nitrate monohydrate, Bi6O4(HO)4(NO3)6.H2O. Acta Chem Scand A. 1979;33:219–224. .
53. Asato, E, Katsura, K, Mikuriya, M, Fujii, T, Reedijk, J. Isolation of a unique hexanuclear [Bi6O4OH(cit)3(H2O)3]3− cluster from the bismuth-containing ulcer healing agent “colloidal bismuth subcitrate (CBS)”. Chem Lett. 1992;21:1967–1970. .
54. Logvinenko, V, Mikhailov, K, Yu, Y. The kinetics of thermal decomposition of bismuth oxohydroxolaurate. J Therm Anal Calorim. 2007;88:47–49. .
55. Sillèn, LG. Die Kristallstruktur einiger Strontium—Wismutoxyhalogenide [SrBi3O4Cl3, SrBiO2Br, SrBi2O3Br2 und SrBi3O4Br3]. Z Anorg Allg Chem. 1941;246:115–130. .
56. Missyul’, AB, Khairullina, EM, Zvereva, IA. Synthesis of the Aurivillius phases Bi2 LnTaTiO9 (Ln=La, Nd, Sm, Gd). Glass Phys Chem. 2010;36:247–250. .
57. Greaves, C, Blower, SK. Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater Res Bull. 1988;23:1001–1008. .
58. Taylor, P, Sunder, S, Lopata, VJ. Structure, spectra, and stability of solid bismuth carbonates. Can J Chem. 1984;62:2863–2873. .
59. Aurivillius, B. X-ray studies of bismuth oxide acetate, CH3COO.OBi and related compounds. Acta Chem Scand. 1955;9:1213–1218. .
60. Srivastava, A, Gunjikar, VG, Sinha, APB. Thermoanalytical studies of zinc citrate, bismuth citrate and calcium citrate. Thermochim Acta. 1987;117:201–217. .