View More View Less
  • 1 Laboratoire de Physico-Chimie des Matériaux-Catalyse et Environnement, Faculté des Sciences, Département de Chimie, Université des Sciences et de la Technologie d’Oran, B.P. 1505, El-Mnaouer, 31000, Oran, Algeria
Restricted access

Abstract

Bismuth mixed oxide powders were prepared by oxalate coprecipitation process. The thermal decomposition behaviour of the coprecipitate precursors has been followed by thermal analysis (TG-DTA) and FTIR spectroscopy. During the decomposition of the precursor, several intermediates species were detected and a mechanism of formation of mixed oxide by this method is proposed. After the thermal treatment, the precursor obtained of suggested formula Ca3[Bi6O6(C2O4)4(OH)3NO3]0.5H2O, has led to the formation of CaBi2O4 at shorter reaction time than the traditional ceramic method. In order to consolidate the results, the coprecipitation in absence of oxalic precipitant under the same conditions was examined. XRD and scanning electron spectroscopy were used to study particles sizes and morphology.

  • 1. Durrani, SK, Qureshi, AH, Qayyum, S, Arif, M. Development of superconducting phases in BSCCO and Ba-BSCCO by sol spray process. J Therm Anal Calorim. 2009;95:8791. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Arshad, M, Qureshi, AH, Masud, K, Qazi, NK. Production of BSCCO bulk high Tc superconductors by sol-gel method and their characterization by FTIR and XRD techniques. J Therm Anal Calorim. 2007;89:595600. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Ono, T, Utsumi, K, Tsukamoto, S, Tamaru, H, Kataoka, M, Noguchi, F. Roles of bulk γ(L)-Bi2MoO6 and surface β-Bi2Mo2O9 in the selective catalytic oxidation of C3H6. J Mol Catal. 2010;318:94100. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. He, Y, Wu, Y, Yi, X, Weng, W, Wan, H. Promotive effect of Bi component on propane partial oxidation over MoBiTeOx/SiO2 catalysts. J Mol Catal. 2010;331:16. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Zheng, Y, Duan, F, Chen, M, Xie, Y. Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed. J Mol Catal. 2010;317:3440. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Liu, Z, Qi, Y, Lu, C. High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. J Mater Sci Mater Electron. 2010;21:380384. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. van der Linden, EG, Luiz Fernando, BM, Eloisa Medeiros, M. Evaluation of synthetic routes to pigmentary grade bismuth vanadate. Dyes Pigm. 2011;90:3640. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Šulcová, P, Trojan, M. Thermal analysis of the Bi2O3-Y2O3-ZrO2 pigments. J Therm Anal Calorim. 2008;93:795798. .

  • 9. Becchetti, FD, Lister, PM, Thorn, CE. Bismuth germanate scintillator as a fast high-energy ion detector. Nucl Instrum Methods Phys Res. 1984;225:280282. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. de Jesus, FAA, da Silva, RS, Macedo, ZS. Synthesis of Bi4Ge3O12 ceramic scintillators by the polymeric precursor method. J Therm Anal Calorim. 2010;100:537541. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Poghossian, AS, Abovian, HV, Avakian, PB, Mkrtchian, SH, Haroutunian, VM. Bismuth ferrites: new materials for semiconductor gas sensors. Sens Actuators B Chem. 1991;4:545549. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Shuk, P, Wiemhöfer, HD, Guth, U, Göpel, W, Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics. 1996;89:179196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Turkoglu, O, Belenli, I. Electrical conductivity of g-Bi2O3-V2O5 solid solution. J Therm Anal Calorim. 2003;73:10011012. .

  • 14. Horn W , Földvari I, Denz C. Holographic data storage in photorefractive bismuth tellurite. J Phys D Appl Phys. . 2008. .

  • 15. Conflant P , Bovin JC, Thomas D. Le Diagramme des Phases Solides du Systeme Bi2O3-CaO. J Solid State Chem. 1976;18:13340.

  • 16. Roth, RS, Hwang, NM, Rawn, CJ, Burton, BP, Ritter, JJ. Phase equilibria in the systems CaO–CuO and CaO–Bi2O3. J Am Ceram Soc. 1991;74:21482151. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Vstavskaya, EY, Zuev, AY, Cherepanov, VA. The phase diagram of the bismuth-calcium oxide system. Mater Res Bull. 1994;29:12331238. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Hallstedt, B, Rissod, D, Gaukler, LJ. Thermodynamic assessment of the bismuth–calcium–oxygen oxide system. J Am Ceram Soc. 1997;80:26292636. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Ubaldini, A, Artini, C, Costa, GA, Carnasciali, MM, Masini, R. Synthesis and thermal decomposition of mixed Gd–Nd oxalates. J Therm Anal Calorim. 2008;91:797803. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Maeda, H, Tanaka, Y, Fukutomi, M, Asano, T. A new high-Tc oxide superconductor without a rare earth element. Jpn J Appl Phys. 1988;27:209210. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Nielsen, KA. Thermal analysis in the research and development of advanced technical ceramics. Thermochim Acta. 1991;175:1324. .

  • 22. Monnereau, O, Tortet, L, Llewellyn, P, Rouquerol, F, Vacquier, G. Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide?. Solid State Ionics. 2003;157:163169. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Kitaguchi, H, Shitani, F, Egi, T, Oda, K, Takada, J, Osaka, A, Miura, NY, Ikeda, Y, Tanako, M. Preparation of the high-Tc phase in the Bi-Pb-Sr-Ca-Cu-O system. Mol Cryst Liq Cryst. 1990;84:129133.

    • Search Google Scholar
    • Export Citation
  • 24. Carp, O, Patron, L, Marinescu, G, Pascu, G, Budrugeac, P, et al. Copper-iron oxides obtained by thermal decomposition of oxalic coordination compounds. J Therm Anal Calorim. 2003;72:263270. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Deb, N. Thermal Investigations of M[La(C2O4)3xH2O (M=Cr(III) and Co(III)). J Therm Anal Calorim. 2002;63:699712. .

  • 26. Marbach, G, Stotz, S, Klee, M, De Vries, JWC. Superconductivity in Bi-Sr-Ca-Cu-O bulk samples made by thermal decomposition of metal oxalates. Phys C. 1989;161: 1 111120. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Mansori, M, Satre, P, Breandon, C, Roubin, M, Sebaoun, A. Elaboration et caractérisation de cuprates de bismuth supraconducteurs. Ann Chim. 1993;18:537547.

    • Search Google Scholar
    • Export Citation
  • 28. Shei, CY, Liu, RS, Chang, CT, Wu, PT. Coprecipitation process for the preparation of superconductive Bi-Sr-Ca-Cu oxides. Mater Lett. 1990;9:105108. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Marta, L, Zaharescu, M, Ciontea, L, Petrisorc, T. Chemical route to the synthesis of superconducting bismuth oxide system. Appl Supercond. 1993;1:677691. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Zhang, Y, Fang, Z, Muhammed, M, Rao, KV, Skumryev, V, Medelius, H, Costa, JL. The synthesis of superconducting bismuth compounds via oxalate coprecipitation. Phys C. 1989;157:108114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Spencer, ND. Alkali-metal-free carbonate coprecipitation: an effective synthetic route to bismuth-based oxide superconductors. Chem Mater. 1990;2:708712. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Zhang, Y, Muhammed, M, Wang, L, Nogues, J, Rao, KV. Synthesis of superconducting Pb/Sb doped BiSrCaCuO compounds via oxalate coprecipitation. Mat Chem Phys. 1992;30:153159. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Chiang, C, Shei, CY, Huang, YT, Lee, WH, Wu, PT. Preparation of high purity 110K phase in the (Bi, Pb)-Sr-Ca-Cu-O superconductor system using a solution method. Phys C. 1990;170:383387. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Chuanbin, M, Zehua, D, Lian, Z. Modified coprecipitation process of synthesizing Bi-system superconductor precursor powder and its stoichiometry. Sci China. 1996;E39:181190.

    • Search Google Scholar
    • Export Citation
  • 35. Popa, M, Totovana, A, Popescu, L, Dragan, N, Zaharescu, M. Reactivity of the Bi, Sr, Ca, Cu oxalate powders used in BSCCO preparation. J Eur Ceram Soc. 1998;18:12651271. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Nakamoto, K. IR spectra of inorganic and coordination compounds. 2 New York: Wiley-Interscience; 1970.

  • 37. Reddy, VB, Mehrotra, PN. IR and thermal studies on lanthanum zirconyl oxalate. J Therm Anal Calorim. 1981;21:2126. .

  • 38. Nissen, DA. The thermal decomposition of plutonium (IV) oxalate hexahydrate. J Therm Anal Calorim. 1980;18:99109. .

  • 39. Balboul, BAA, El-Roudi, AM, Samir, E, Othman, AG. Non-isothermal studies of the decomposition course of lanthanum oxalate decahydrate. Thermochim Acta. 2002;387:109114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Mehring, M. From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Cood Chem Rev. 2007;251:9741006. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Yang, N, Sun, H. Biocoordination chemistry of bismuth: recent advances. Cood Chem Rev. 2007;251:23542366. .

  • 42. Suzuki, H, Matano, Y. Organobismuth chemistry. Amsterdam: Elsevier; 2001.

  • 43. Luckay, R, Cukrowski, I, Mashishi, J, Reibenspies, JH, Bond, AH, Rogers, RD, Hancock, RD. Synthesis, stability and structure of the complex of bismuth(III) with the nitrogen-donor macrocycle 1,4,7,10 tetraazacyclododecane. The role of the lone pair on bismuth(III) and lead (II) in determining co-ordination geometry. J Chem Soc Dalton Trans. 1997;26:901908. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Stavila, V, Davidovich, RL, Gulea, A, Whirmire, KH. Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: chemistry and structure. Coord Chem Rev. 2006;250:27822810. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Mehring, M, Mansfeld, D, Paalasmaa, S, Schürmann, M. Polynuclear bismuth-oxo clusters: insight into the formation process of a metal oxide. Chem Eur J. 2006;12:17671781. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Mansfeld, D, Mehring, M, Schürmann, M. From a monomeric bismuth silanolate to a molecular bismuth oxo cluster: [Bi22O26(OSiMe2 tBu)14]. Angew Chem Int Ed. 2005;44:245249. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Tytko, KH. Isopolyoxokationen—Metallkationen in wäßriger Lösung. Chem unserer Zeit. 1979;13:184194. .

  • 48. Lazarini, F. The crystal structure of a bismuth basic nitrate, [Bi6O5(OH)3](NO3)3.3H2O. Acta Crystallogr B. 1978;34:31693173. .

  • 49. Lazarini, F. Bismuth basic nitrate, [Bi6(H2O)(NO3)O4(OH)4](NO3)5. Acta Crystallogr B. 1979;35:448450. .

  • 50. Henry, N, Mentre, O, Abraham, F, MacLean, EJ, Roussel, P. Polycationic disorder in [Bi6O4(OH)4](NO3)6: structure determination using synchrotron radiation and microcrystal X-ray diffraction. J Solid State Chem. 2006;179:30873094. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Christensen, AN, Chevallier, MA, Skibsted, J, Iversen, BB. Synthesis and characterization of basic bismuth(III) nitrates. J Chem Soc Dalton Trans. 2000;29:265270. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Sundvall, B. Crystal and molecular structure of tetraoxotetrahydroxobismuth(III) nitrate monohydrate, Bi6O4(HO)4(NO3)6.H2O. Acta Chem Scand A. 1979;33:219224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Asato, E, Katsura, K, Mikuriya, M, Fujii, T, Reedijk, J. Isolation of a unique hexanuclear [Bi6O4OH(cit)3(H2O)3]3− cluster from the bismuth-containing ulcer healing agent “colloidal bismuth subcitrate (CBS)”. Chem Lett. 1992;21:19671970. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Logvinenko, V, Mikhailov, K, Yu, Y. The kinetics of thermal decomposition of bismuth oxohydroxolaurate. J Therm Anal Calorim. 2007;88:4749. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Sillèn, LG. Die Kristallstruktur einiger Strontium—Wismutoxyhalogenide [SrBi3O4Cl3, SrBiO2Br, SrBi2O3Br2 und SrBi3O4Br3]. Z Anorg Allg Chem. 1941;246:115130. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56. Missyul’, AB, Khairullina, EM, Zvereva, IA. Synthesis of the Aurivillius phases Bi2 LnTaTiO9 (Ln=La, Nd, Sm, Gd). Glass Phys Chem. 2010;36:247250. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57. Greaves, C, Blower, SK. Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater Res Bull. 1988;23:10011008. .

  • 58. Taylor, P, Sunder, S, Lopata, VJ. Structure, spectra, and stability of solid bismuth carbonates. Can J Chem. 1984;62:28632873. .

  • 59. Aurivillius, B. X-ray studies of bismuth oxide acetate, CH3COO.OBi and related compounds. Acta Chem Scand. 1955;9:12131218. .

  • 60. Srivastava, A, Gunjikar, VG, Sinha, APB. Thermoanalytical studies of zinc citrate, bismuth citrate and calcium citrate. Thermochim Acta. 1987;117:201217. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)