This article presents the changes in the thermal properties of the control and titanium dioxide (TiO2), both nano and bulk exposed Zebrafish bones by using thermo analytical techniques. The result shows that the mass loss due to the thermal decomposition occurs in three distinct steps due to loss of water, organic and inorganic materials. The titanium dioxide exposed bones present a different thermal behaviour compared to the control bones. The residue masses are found to be increased due to titanium dioxide exposure. In particular, nano titanium dioxide exposure increases the residue mass level significantly (three fold) when compared to titanium dioxide bulk exposure. These thermal characteristics can be used as a qualitative method to check the metal oxide intoxication in biological samples.
1. Oberdörster, G, Oberdörster, E, Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–839. .
2. Klaine, SJ, Alvarez, PJJ, Batley, GE, Fernandes, TF, Handy, RD, Lyon, DY, Mahendra, S, McLaughlin, MJ, Lead, JR. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27:1825–1851. .
3. Moore, MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environ Int. 2006;32:967–976. .
4. Canesi, L, Ciacci, C, Vallotto, D, Gallo, G, Marcomini, A, Pojana, G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicol. 2010;96:151–158. .
5. Gulson, BL, Jameson, CW, Mahaffey, KR, Mizon, KJ, Korsch, MJ, Vimpani, G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997;130:51–62. .
6. Onishi, A, Thomas, PS, Stuart, BH, Guerbois, JP, Forbes, S. TG-MS characterization of pig bone in an inert atmosphere. J Therm Anal Calorim. 2007;88:405–409. .
7. Kosugi, H, Hanihara, K, Suzuki, T, Himeno, S, Kawabe, T, Hongo, T, et al. Elemental composition of ancient Japanese bones. Sci Total Environ. 1986;52:93–107. .
8. Englert, N, Krause, C, Thron, HL, Wagner, M. Studies on lead exposure of selected population groups in Berlin West Germany. Trace Elem Med. 1987;4:112–116.
9. Mojumdar, SC, Sain, M, Prasad, RC, Sun, L, Venart, JES. Selected thermoanalytical methods and their applications from medicine to construction. Part I. J Therm Anal Calorim. 2007;90:653–662. .
10. Raja, S, Thomas, PS, Stuart, BH, Guerbois, JP, O’Brien, C. The estimation of pig bone age for forensic application using thermogravimetric analysis. J Therm Anal Calorim. 2009;98:173–176. .
11. Presswala, L, Matthews, ME, Atkinson, I, Najjar, O, Gerhardstein, N, Moran, J, Wei, R, Riga, AT. Discovery of bound and unbound waters in crystalline amino acids revealed by thermal analysis. J Therm Anal Calorim. 2008;93:295–300. .
12. Sohar, G, Pallagi, E, Szabo-Revesz, P, Toth, K. New thermogravimetric protocol for the investigation of normal and damaged human hyaline cartilage. J Therm Anal Calorim. 2007;89:853–856. .
13. Fantner, GE, Birkedal, H, Kindt, JH, Hassenkam, T, Weaver, JC, Cutroni, JA, Bosma, BL, Bawazer, L, Finch, MM, Cidade, GAG, Morse, DE, Stucky, GD, Hansma, PK. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone. 2004;35:1013–1022. .
14. Okamoto, Y, Hidaka, S, Yamada, Y, Ouchi, K, Miyazaki, K, Liu, SY. Thermal analysis of bones from ovariectomized rats. J Biomed Mater Res. 1998;41:221–226. .
15. Mkukuma, LD, Skakle, JMS, Gibson, IR, Imrie, CT, Aspden, RM, Hukins, DWL. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75:321–328. .
16. Peters, F, Schwarz, K, Epple, M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–138. .
17. Deviese, T, Colombini, MP, Regert, M, Stuart, BH, Guerbois, JP. TGMS analysis of archaeological bone from burials of the late Roman period. J Therm Anal Calorim. 2010;99:811–813. .
18. Than, P, Kereskai, L. Thermal analysis of the osteoarthritic human hyaline cartilage. J Therm Anal Calorim. 2005;82:213–216. .
19. Than, P, Domán, I, Lörinczy, D. Differential scanning calorimetry in the research of degenerative musculoskeletal disorders. Thermochim Acta. 2004;415:83–87. .
20. Szabo, I, Bognar, G, Kereskai, L, Szasz, K, Lorinczy, D. Differential scanning calorimetric and histological examinations of the long head of the biceps in cadavers. J Therm Anal Calorim. 2007;88:343–349. .
21. Coe, TS, Hamilton, PB, Griffiths, AM, Hodgson, DJ, Wahab, MA, Tyler, CR. Genetic variation in strains of Zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology. 2009;18:144–150. .
22. Litchfield, JT, Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949;96:99–130.
23. Matthews, RW. Purification of water with near-u.v. illuminated suspensions of titanium dioxide. Water Res. 1990;24:653–660. .
24. Eaton, AE, Lenore, S, Clesceri, LS, Rice, EW, Greenberg, AE. Standard methods for the examination of water and wastewater. Centennial Edition. 21 Washington, DC: APHA, AWWA, WEF; 2005.
25. Onishi, A, Thomas, PS, Stuart, BH, Guerbois, JP, Forbes, SL. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90. .
26. Mothe, CG, Mothe Filho, HF, Lima, RJC. Thermal study of the fossilization processes of the extinct fishes in Araripe Geopark. J Therm Anal Calorim. 2008;93:101–104. .
27. Vijayasundaram, V, Ramasamy, V, Palaniappan, PLRM. The study of the changes in the thermal properties of Labeo rohita bones due to arsenic exposure. J Therm Anal Calorim. 2009;98:183–188. .
28. Odriozola, C, Martinez-Blanes, JM. Estimate of firing temperatures through bone-based chalcolithic decorated pottery. J Therm Anal Calorim. 2007;87:135–141. .
29. Utech, M, Vuono, D, De Luca, P, Nastro, A. Correlation of physical-chemical properties of healthy and pathologic human bones. J Therm Anal Calorim. 2005;80:435–438. .
30. Bálint, G, Than, P, Domán, I, Wiegand, N, Horváth, G, Lorinczy, D. Calorimetric examination of the human meniscus. J Therm Anal Calorim. 2009;95:759–761. .
31. Joschek, S, Nies, B, Krotz, R, Göpferich, A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 2000;21:1645–1658. .
32. Rincon, JMa, Romero, M, Hidalgo, A, Liso, Ma J. Thermal behaviour and characterization of an iron aluminum arsenate mineral Mansfieldite-Scorodite series. J Therm Anal Calorim. 2004;76:903–911. .