View More View Less
  • 1 Integrative Medicine Center of the 302nd Military Hospital, China Military Institute of Chinese Materia Medica, Beijing 100039, People’s Republic of China
  • | 2 College of Pharmacy, Chengdu University of Chinese Traditional Medicine, Chengdu 610075, People’s Republic of China
Restricted access

Abstract

Curcumin (CUR), a frequently-used food additive and flavorings, has been reported to be safe at a wide dose range. Bacillus subtilis (B. subtilis) is commonly found in soil and decomposing organic matter, and it was reported beneficial for humans when ingested. Up to now, there have been no contraindication of B. subtilis except for the avoidance of the drug combination with antibiotics, and the interaction of food and B. subtilis drug is blank. In this study, the interaction of CUR and B. subtilis was investigated. Microcalorimetry was applied to evaluate the effect of CUR on B. subtilis growth. By analyzing the main parameters extracted from the heat-flow power–time curves, it was concluded that CUR could inhibit the growth of B. subtilis, and the 50% inhibiting concentration (IC50) valued 109.9 μg mL−1. The results revealed that it is unreasonable to take CUR and B. subtilis at the same time, and it also provided a new way for the investigation of the interaction between food and drug. Meanwhile, this study indicated that the safety of CUR should be re-evaluated.

  • 1. Scotter, MJ. Synthesis and chemical characterisation of curcuminoid colouring principles for their potential use as HPLC standards for the determination of curcumin colour in foods. LWT Food Sci Technol. 2009;42:13451351. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Tsatsaroni, E, Liakopoulou-Kyriakides, M, Eleftheriadis, I. Comparative study of dyeing properties of two yellow natural pigments-effect of enzymes and proteins. Dyes Pigments. 1998;37:307315. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Hanif, R, Qiao, L, Shiff, SJ, Rigas, B. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med. 1997;130:576584. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Hashem, MM, Atta, AH, Arbid, MS, Nada, SA, Asaad, GF. Immunological studies on Amaranth, Sunset Yellow and Curcuminas food colouring agents in albino rats. Food Chem Toxicol. 2010;48:15811586. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Sikora, E, Bielak-Zmijewska, A, Piwocka, K, Skierski, J, Radziszewska, E. Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochem Pharmacol. 1997;54:899907. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Shankar, TNB, Murthy, VS. Effect of turmeric (Curcuma longa) fractions on the growth of some intestinal and pathogenic bacteria in vitro. Indian J Exp Biol. 1979;17:13631366.

    • Search Google Scholar
    • Export Citation
  • 7. Lee, SH, Chang, KS, Su, MS, Huang, YS, Jang, HD. Effects of some Chinese medicinal plant extracts on five different fungi. Food Control. 2007;18:15471554. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Reddy, KRN, Reddya, CS, Muralidharan, K. Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Control. 2009;20:173178. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Toda, S, Miyase, T, Arichi, H, Tanizawa, H, Takino, Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull. 1985;33:725728.

    • Search Google Scholar
    • Export Citation
  • 10. Banerji, A, Chakrabarti, J, Mitra, A, Chatterjee, A. Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells. Cancer Lett. 2004;211:235242. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Shankar, TNB, Shantha, NV, Ramesh, HP, Murthy, IAS, Murthy, VS. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guinea pigs and monkeys. Indian J Exp Biol. 1980;18:7375.

    • Search Google Scholar
    • Export Citation
  • 12. Sambaiah, K, Ratankumar, S, Kamanna, VS, Satyanarayana, MN, Rao, MVL. Influence of turmeric and curcumin on growth, blood constituents and serum enzymes in rats. J Food Sci Technol. 1982;19:187190.

    • Search Google Scholar
    • Export Citation
  • 13. Kinsella, K, Schulthess, CP, Morris, TF, Stuart, JD. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol Biochem. 2008;41:374379. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Carrillo, C, Teruel, JA, Aranda, FJ, Ortiz, A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta Biomembr. 2003;1611:9197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Asaka, O, Shoda, M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol. 1996;62:40814085.

    • Search Google Scholar
    • Export Citation
  • 16. Nagorska, K, Bikowski, M, Obuchowski, M. Multicellular behavior and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol. 2007;54:495508.

    • Search Google Scholar
    • Export Citation
  • 17. Ongena, M, Jacques, P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16:115125. .

  • 18. Williams, V, Fletcher, M. Pseudomonas fluorescens adhesion and transport trough porous media are affected by lipopolysaccharide composition. App Environ Microbiol. 1996;62:100104.

    • Search Google Scholar
    • Export Citation
  • 19. Caruso, A, Flamminio, G, Folghera, S, Peroni, L, Foresti, I, Balsari, A, Turano, A. Expression of activation markers on peripheral-blood lymphocytes following oral administration of Bacillussubtilis spores. Int J Immunopharmacol. 1993;15:8792. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Hu, B, Li, C, Lu, HJ, Zhu, ZB, Du, SW, Ye, M, Tan, L, Ren, D, Han, J, Kan, S, Wang, J, Jin, N. Immune responses to the oral administration of recombinant Bacillus subtilis expressing multi-epitopes of foot-and-mouth disease virus and a cholera toxin B subunit. J Virol Methods. 2011;171:272279. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Sun, P, Wang, JQ, Zhang, HT. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J Dairy Sci. 2010;93:58515855. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Tseng, DY, Ho, PL, Huang, SY, Cheng, SC, Shiu, YL, Chiu, CS, Liu, CH. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol. 2009;26:339344. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Sakai, A, Kita, M, Katsuragi, T, Ogasawara, N, Tani, Y. yaaD and yaaE are involved in vitamin B6 biosynthesis in Bacillus subtilis. J Biosci Bioeng. 2002;93:309312.

    • Search Google Scholar
    • Export Citation
  • 24. Sakai, A, Kita, M, Katsuragi, T, Tani, Y. serC Is involved in vitamin B6 biosynthesis in Escherichia coli but not in Bacillus subtilis. J Biosci Bioeng. 2002;93:334337.

    • Search Google Scholar
    • Export Citation
  • 25. Muscettola, M, Grasso, G, Blach-Olszewska, Z, Migliaccio, P, Borghesi Nicoletti, C, Giarratana, M, Gallo, VC. Effects of Bacillus subtilis spores on interferon production. Pharmacol Res. 1992;26:176177. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Kosaka, T, Maeda, T, Nakada, Y, Yukawa, M, Tanaka, S. Effect of Bacillus subtilis spore administration on activation of macrophages and natural killer cells in mice. Vet Microbiol. 1998;60:215225. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Smith, TJ, Foster, SJ. Autolysins during sporulation of Bacillus subtilis 168. FEMS Microbiol Lett. 1997;157:141147. .

  • 28. Morimoto, I, Watanabe, F, Osawa, T, Okitsu, T, Kada, T. Mutagenicity screening of crude drugs with Bacillus subtilis rec-assay and Salmonella/microsome reversion assay. Mutat Res Environ Mutagen Relat Subj. 1982;97:81102.

    • Search Google Scholar
    • Export Citation
  • 29. Hong, HA, Khaneja, R, Tam, NMK, Cazzato, A, Tan, S, Urdaci, M, Brisson, A, Gasbarrini, A, Barnes, I, Cutting, SM. Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol. 2009;160:134143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Salinas, I, Cuesta, A, Esteban, , Meseguer, J. Dietary administration of Lactobacillus delbrüeckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immunol. 2005;19:6777. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Phipps, MA, Mackin, LA. Application of isothermal microcalorimetry in solid state drug development. Pharm Sci Technol Today. 2000;3:917. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Medina, S, Raviv, M, Saadi, I, Laor, Y. Methodological aspects of microcalorimetry used to assess the dynamics of microbial activity during composting. Bioresour Technol. 2009;100:48144820. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Yan, D, Jin, C, Xiao, XH, Dong, XP. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J Biochem Biophys Methods. 2008;70:845849. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kong, WJ, Li, ZL, Xiao, XH, Zhao, YL, Zhang, P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102:331336. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Lago, N, Legido, JL, Paz Andrade, MI, Arias, I, Casás, LM. Microcalorimetric study on the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2010;105:651655. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Chen, Y, Zhu, SB, Xie, MY, Nie, SP, Liu, W, Li, C, Gong, XF, Wang, YX. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal Chim Acta. 2008;623:146156. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Xie, PS. Chromatographic fingerprints of traditional Chinese medicine (in Chinese). 1 Beijing: People’s Medical Press; 2005.

  • 38. Xie, CL, Tang, HK, Song, ZH, Qu, SS, Liao, YT, Liu, HS. Microcalorimetric study of bacterial growth. Thermochim Acta. 1988;123:3341. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Gao, XH, Guo, LH, Li, H. Discrimination between natural and cultured Gastrodia elata blumes by X-ray diffraction fingerprint patterns and similarity degree of different fingerprint patterns. Chem Res Appl. 2005;17:5860.

    • Search Google Scholar
    • Export Citation
  • 40. Dakna, M, Opatrný, T, Welsch, DG. Homodyne measurement of exponential phase moments. Opt Commun. 1998;148:355375. .

  • 41. Brunner, B, Yu, JY, Mielke, RE, MacAskill, JA, Madzunkov, S, McGenity, TJ, Coleman, M. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy. Earth Planet Sci Lett. 2008;270:6372. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Wang, HW, Cheng, HR, Wei, DZ, Wang, FQ. Comparison of methods for measuring viable E. coli cells during cultivation: great differences in the early and late exponential growth phases. J Microbiol Methods. 2011;84:140143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of curcumin (E 100) as a food additive. EFSA J. 2010;8:16791724.

    • Search Google Scholar
    • Export Citation