View More View Less
  • 1 Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44114, USA
  • | 2 Department of Chemistry, Notre Dame College, Notre Dame, USA
Restricted access

Abstract

Thermal mechanical analysis (TMA) of crystalline drugs and excipients in their pre-melt temperature range performed in this study corroborate their newly found linear dielectric conductivity properties with temperature. TMA of crystalline active pharmacy ingredients (APIs) or excipients shows softening at 30–100 °C below the calorimetric melting phase transition, which is also observed by dielectric analysis (DEA). Acetophenetidin melts at 135 °C as measured calorimetrically by DSC, but softens under a low mechanical stress at 95 °C. At this pre-melting temperature, the crystals collapse under the applied load, and the TMA probe shows rapid displacement. The mechanical properties yield a softening structure and cause a dimensionally slow disintegration resulting in a sharp dimensional change at the melting point. In order to incorporate these findings into a structure–property relationship, several United States Pharmacopeia (USP) melting-point standard drugs were evaluated by TMA, DSC, and DEA, and compared to the USP standard melt temperatures. The USP standard melt temperature for vanillin (80 °C) [], acetophenetidin (135 °C) [], and caffeine (235 °C) [] are easily verified calorimetrically via DSC. The combined thermal analysis techniques allow for a wide variety of the newly discovered physical properties of drugs and excipients.

  • 1. Chemical Book Inc. CAS no. 121-33-5 Vanillin. Merck. 2011;14:9932.

  • 2. Chemical Book Inc. CAS no. 62-44-2, Acetophenetidin Merck, 2011;14:7204.

  • 3. Chemical Book Inc. CAS no 58-08-2, Caffeine. Merck. 2011;14:1636.

  • 4. Hancock, BC, Parks, M. 2000 What is the true solubility advantage for amorphous pharmaceuticals?. Pharm Res. 17: 4 397404. .

  • 5. Danchen G , Howard RJ. Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients. Int J Pharm. 1997;151(2):26, 183–192.

    • Search Google Scholar
    • Export Citation
  • 6. Raymond CR , Paul JS, Paul JW. Handbook of pharmaceutical excipients, 4th edn. Washington, DC: Pharmaceutical Press, American Pharmaceutical Association, 1976; p. 50, 51, 86, 252–254, 326, 373, 374, 667.

    • Search Google Scholar
    • Export Citation
  • 7. Riga AT , Roy S, Alexander KS. A statistical approach for the evaluation of parameter affecting preformulation studies of pharmaceuticals by differential scanning calorimetry. American Pharmaceutical Review. 2003; p. 8995.

    • Search Google Scholar
    • Export Citation
  • 8. Sax, NI. Dangerous properties of industrial materials. 3 New York: Van Nostrand Reinhold Co; 1968 892.

  • 9. Neag CM . Thermomechanical analysis in materials science, material characterization by thermomechanical analysis, ASTM STP 1136. In: Riga AT, Neag CM, editors. Philadelphia: American Society for Testing and Materials, 1991. p. 321.

    • Search Google Scholar
    • Export Citation
  • 10. Grady, LT, Reamer, JT. 1976 Testing of heat sealing by thermal analysis. J Pharm Sci. 65: 4 628630. .

  • 11. Masilungan, FC, Lordi, NG. 1984 Evaluation of film coating compositions by thermomechanical analysis. I. penetration mode. Int J Pharm. 20:295305. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Wunderlich B . Thermomechanical analysis and dilatomerty, chapter 6. Boston: Academic Press; 1990. p. 315.

  • 13. Höhne G , Hemminger W, Flammersheim HJ. Differential scanning calorimetry, second edition. Thermochim Acta. 2003;160:1.

  • 14. Watson ES , O’Neill MJ. US Patent 3,263,484, 2 August 1966.

  • 15. Verdonck, E, Schaap, K, Thomas, LC. 1999 A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int J Pharm. 192:320. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Riga A , Judovits L. Materials characterization by dynamic and modulated thermal analytical techniques. San Francisco: ASTM Special Technical Publication; 2001. p. 1402.

    • Search Google Scholar
    • Export Citation
  • 17. Saleh SW , Molek SM, Mantheni D, Sam-Yellowe MPKMT, Riga A. Thermal behavior and signature patterns of human cytokine and soluble cytokine receptors investigated using dielectric thermal analysis and thermogravimetry. J Therm Anal Calorim Anal. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Mantheni RD , Maheswaram MPK, Sobhi HF, Perera I, Riga AT, Matthews E, Alexander K. Solid state studies of drugs and chemicals by dielectric and calorimetric analysis. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 2 0 0
Dec 2021 0 0 0