View More View Less
  • 1 Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista, Rodovia Araraquara-Jau Km 1 CP 502, Araraquara, SP, 14801-902, Brazil
  • | 2 Departamento de Química Analítica, Universidade Estadual Paulista, Instituto de Química, R. Prof. Francisco Degni, s/n, CP 355, Araraquara, SP, 14801-970, Brazil
Restricted access

Abstract

Solid lipid nanoparticles (SLNs), loaded and unloaded with praziquantel (PRZ-load SLN and PRZ-unload SLN) were prepared by two different procedures: (a) oil-in-water hot microemulsion method, obtaining at 70 °C an optically transparent blend composed of surfactant, co-surfactant, and water; and (b) oil-in-water microemulsion method, dissolving the lipid in an immiscible organic solvent, emulsified in water containing surfactants and co-surfactant, and then evaporated under reduced pressure at 50 °C. The mean diameter, polydispersity index (PdI), and zeta potential were 187 to 665 nm, 0.300 to 0.655, and −25 to −28 mV respectively, depending on the preparation method. The components, binary mixture, SLNs loaded and unloaded with PRZ, and physical mixture were evaluated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The non-isothermal isoconversional Flynn-Wall–Ozawa method was used to determine the kinetic parameters associated with the thermal decomposition of the samples. The experimental data indicated a linear relationship between the apparent activation energy E and the pre-exponential factor A, also called the kinetic compensation effect (KCE), allowing us to determine the stability with respect to the preparation method. Loading with PRZ increased the thermal stability of the SLNs.

  • 1. World Health Organization. Schistosomiasis. http://www.who.int/schistosomiasis/en. Accessed 22 Jan 2011.

  • 2. Jeziorski, MC, Greenberg, RM. 2006 Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. Int J Parasitol. 36: 6 625632. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. USP 31, NF 23. The United States Pharmacopeia and National Formulary. 2008; 30567.

  • 4. The Merck Index, Merck & Co. Inc., 13th ed. New York: Whitehouse Station; 2001.

  • 5. Passerini, N, Albertici, B, Perissuti, B, Rodriguez, L. 2006 Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 318: 1–2 92102. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Hu, FQ, Zhang, Y, Du, YZ, Yuan, H. 2008 Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int J Pharm. 348: 1–2 146152. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Müller, RH, Runge, SA, Ravelli, V, Thünemann, F, Mehnert, W, Souto, EB. 2008 Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 68: 3 535544. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Joshi, M, Patravale, V. 2008 Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 346: 1–2 124132. .

  • 9. Gasco MR . Method for producing solid lipid microspheres having a narrow size distribution. US Patent 1993;No. 5,250,236.

  • 10. Müller RH , Lucks JS. Medication vehicles made of solid lipid particles (solid lipid nanospheres––SLN). European Patent 1996;No. 0605497.

    • Search Google Scholar
    • Export Citation
  • 11. Fricker, G, Kromp, T, Wendel, A, Blume, A, Zirkel, J, Rebmann, H, Setzer, C, Quinkert, RO, Martin, F, Müller-Goymann, C. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27:14691486. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kristl, J, Volk, B, Ahlin, P, Gombac, K, Sentjurc, M. 2003 Interactions of solid lipid nanoparticles with membranes and leukocytes studied by EPR. Int J Pharm. 256:133140. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kumar, VV, Chandrasekar, D, Ramakrishna, S, Kishan, V, Rao, YM, Diwan, PV. 2007 Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 335:167175. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Lin, X, Li, X, Zheng, L, Yu, L, Zhang, Q, Liu, W. 2007 Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids and Surf A. 311:106111. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Muller, RH, Mader, K, Gohla, S. 2000 Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 50:161177. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Radomska-Soukharev, A. 2007 Stability of lipid excipient in solid lipid nanoparticles. Adv Drug Deliver Rev. 59:411418. .

  • 17. Westesen, K, Bunjes, H. 1995 Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix?. Int J Pharm. 115:129131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Bunjes, H, Unruh, T. 2007 Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliver Rev. 59:379402. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Liu, H, Li, S, Wang, Y, Yao, H, Zhang, Y. 2006 Effect of vehicles and enhancers on the topical delivery of cyclosporine A. Int J Pharm. 311:182186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Mainardes, RM, Chaud, MV, Gremião, MPD, Evangelista, RC. 2006 Development of praziquantel-loaded PLGA nanoparticles and evaluation of intestinal permeation by the everted gut sac model. J Nanosci Nanotechnol. 6:30573061. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Luo, Y, Chen, D, Ren, L, Zhao, X, Qin, J. 2006 Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 114:5359. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Mehnert, W, Mader, K. 2001 Solid lipid nanoparticles: production, characterization, and applications. Adv Drug Deliver Rev. 47:165196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Pedersen, N, Hansen, S, Heydenreich, AV, Kristensen, HG, Poulsen, HS. 2006 Solid lipid nanoparticles can effectively bind DNA streptavidin and biotinylated ligands. Eur J Pharm Biopharm. 62:155162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Mendoza, AE, Companero, MA, Mollinedo, F, Blanco-Prieto, MJ. 2009 Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol. 5:323343. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Brown, ME, Dolimore, D, Galwey, AK. Reactions in the solid state: comprehensive chemical kinetics. Amsterdam: Elsevier; 1980.

  • 26. Flynn, JH, Wall, LA. 1966 General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A. 70:487523.

  • 27. Flynn, JH, Wall, J. 1966 A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 4:323328. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Dahiya, JB, Kumar, K, Muller-Hagedorn, M, Bockhom, H. 2008 Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 57:722729. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Doyle, CD. 1962 Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 6:639642. .

  • 30. Kissinger, HE. 1957 Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)