View More View Less
  • 1 School of Pharmaceutical Sciences, Paulista State University, Araraquara, Brazil
  • | 2 Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, P.O. Box 1013, 5000-911, Vila Real, Portugal
  • | 3 Centre for Research and Technology of Agro-Environmental and Biological Sciences, Vila Real, Portugal
  • | 4 Chemistry Research Centre, Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
  • | 5 Institute of Chemistry, Paulista State University, Araraquara, Brazil
  • | 6 Department of Chemistry, Federal University of Sergipe, Itabaiana, SE, Brazil
  • | 7 Faculty of Health Sciences, Department of Pharmaceutical Technology, Fernando Pessoa University, UFP, Rua Carlos da Maia, 296, Office S.1, P-4200-150, Porto, Portugal
  • | 8 Institute of Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes e Alto Douro (IBB-CGB/UTAD), Vila Real, Portugal
Restricted access

Abstract

Praziquantel (PZQ) is the drug of choice for oral treatment of schistosomiasis and other fluke infections that affect humans. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. In this article, solid lipid nanoparticles loaded with PZQ (PZQ-SLN) were prepared by a modified oil-in-water microemulsion method selecting stearic acid as lipid phase after solubility screening studies. The mean particle size (Z-Ave) and zeta potential (ZP) were 500 nm and −34.0 mV, respectively. Morphology and shape of PZQ-SLN were analysed by scanning electron microscopy revealing the presence of spherical particles with smooth surface. Differential scanning calorimetry suggested that SLN comprised a less ordered arrangement of crystals and the drug was molecularly dispersed in the lipid matrix. No supercooled melts were detected. The entrapment efficiency (EE) and loading capacity of PZQ, determined by high performance liquid chromatography, were 99.06 ± 0.3 and 17.48 ± 0.05, respectively. Effective incorporation of PZQ into the particles was confirmed by small angle X-ray scattering revealing the presence of a lipid lamellar structure. Stability parameters of PZQ-SLN stored at room temperature (25 °C) and at 4 °C were checked by analysing Z-Ave, ZP and the EE for a period of 60 days. Results showed a relatively long-term physical stability after storage at 4 °C, without drug expulsion.

  • 1. Reynolds, JEF, Parfitt, K, Parsons, AV, Swetman, SC. Martindale the extra pharmacopoeia. 30 London: The Pharmaceutical Press; 1993.

  • 2. Ali, BH. Short review of some pharmacological, therapeutic and toxicological properties of praziquantel in man and animals. Pak J Pharm Sci. 2006;19:170175.

    • Search Google Scholar
    • Export Citation
  • 3. Mourão, SC, Costa, PI, Salgado, HRN, Gremião, MPD. Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. Int J Pharm. 2005;295:157162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Das, S, Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12:6276. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Muchow, M, Maincent, P, Muller, RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm. 2008;34:13941405. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Souto EB , Müller RH. Lipid nanoparticles—Effect on bioavailability and pharmacokinetics changes. In: Schäfer-Korting M, editor. Handbook of experimental pharmacology—Novel drug delivery approaches. vol. 197. Heidelberg, Berlin, Germany: Springer Verlag; 2009 (chapter 4). pp. 115142.

    • Search Google Scholar
    • Export Citation
  • 7. Muller, RH, Mader, K, Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161177. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Souto EB , Müller RH. Lipid nanoparticles (SLN and NLC) for drug delivery. In: Domb AJ, Tabata Y, Ravi Kumar MNV, Farber S, editors. Nanoparticles for pharmaceutical applications. American Scientific Publishers; 2007 (chapter 5). pp. 103122.

    • Search Google Scholar
    • Export Citation
  • 9. Martins, S, Silva, AC, Ferreira, DC, Souto, EB. Improving oral absorption of Samon Calcitonin by mucoadhesive solid lipid nanoparticles (SLN). J Biomed Nanotechnol. 2009;5:7683. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Mehnert, W, Mader, K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Souto, EB, Anselmi, C, Centini, M, Müller, RH. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN®). Int J Pharm. 2005;295:261268. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Souto, EB, Muller, RH. SLN and NLC for topical delivery of ketoconazole. J Microencapsul. 2005;22:501510. .

  • 13. Heurtault, B, Saulnier, P, Pech, B, Proust, JE, Benoit, JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:42834300. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Schwarz, C, Mehnert, W, Lucks, JS, Müller, RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release. 1994;30:8396. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Gonzalez-Mira E , Egea MA, Garcia ML, Souto EB. Factorial design study of ultrasound-engineered NLC for ocular delivery of flurbiprofen,. Colloids Surf B Biointerfaces. 2010;81:41221.

    • Search Google Scholar
    • Export Citation
  • 16. Bunjes, H, Siekmann, B, Westesen, K. Emulsions of super-cooled melts—a novel drug delivery system Benita, S, eds. Submicron emulsions in drug targeting and delivery. Amsterdam: Harwood Academic Publishers; 1998 175204.

    • Search Google Scholar
    • Export Citation
  • 17. Ali, H, El-Sayed, K, Sylvester, PW, Nazzal, S. Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: evidence studies by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Colloids Surf B Biointerfaces. 2010;77:286297. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Westesen, K, Bunjes, H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix?. Int J Pharm. 1995;115:129131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Jenning, V, Thünemann, AF, Gohla, SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199:167177. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Doktorovova, S, Araujo, J, Garcia, ML, Rakovsky, E, Souto, EB, Doktorovova, S, Araujo, J, Garcia, ML, Rakovsky, E, Souto, EB. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf B Biointerfaces. 2010;75:538542. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Aji Alex, MR, Chacko, AJ, Jose, S, Souto, EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42:1118. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Chen, H, Chang, X, Du, D, Liu, W, Liu, J, Weng, T, Yang, Y, Xu, H, Yang, X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110:296306. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Venkateswarlu, V, Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95:627638. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Kuntsche, J, Westesen, K, Drechsler, M, Koch, MH, Bunjes, H. Supercooled smectic nanoparticles—a potential novel carrier system for poorly water soluble drugs. Pharm Res. 2004;21:18361845. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Freitas, C, Müller, RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47:125132. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Bunjes, H, Westesen, K, Koch, MHJ. Crystallinization tendency and polymorphic transitions triglyceride nanoparticles. Int J Pharm. 1996;129:159173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Lukowski, G, Kasbohm, J, Pflegel, P, Illing, A, Wulff, H. Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int J Pharm. 2000;196:201205. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Maruyama, T, Nakajima, M, Ichikawa, S, Sano, Y, Nabetani, H, Furusaki, S, Seki, M. Small angle X-Ray scattering analysis of stearic acid modified lipase. Biosci Biotechnol Biochem. 2001;65:10031006. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Haskell, RJ, Shifflett, JR, Elzinga, PA. Particle-sizing technologies for submicron emulsions Benita, S, eds. Submicron emulsions in drug targeting and delivery. Amsterdam: Harwood Academic Publishers; 1998 2198.

    • Search Google Scholar
    • Export Citation
  • 30. Freitas, C, Müller, RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions. Int J Pharm. 1998;168:221229. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Kheradmandnia, S, Vasheghani-Farahani, E, Nosrati, M, Atyabi, F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine. 2010;6:753759. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 10 1 1
Jun 2021 8 0 0
Jul 2021 10 0 0
Aug 2021 7 0 0
Sep 2021 10 1 0
Oct 2021 12 0 0
Nov 2021 0 0 0