The kaolin sand containing 36 wt% of kaolinite was thermally transformed at 650 °C/L h to the burnt kaolin sand (BKS) with relevant content of metakaolinite. Thermal behaviour of composites with substitution of Portland cement (PC) by the BKS containing 0, 5, 10 and 15 wt% of metakaolinite and water-to-solid ratio of 0.5 kept for 90 days in 20 ± 1 °C water was studied by thermal analysis. TG/DTA/DTG studies concerned calciumsilicate hydrate and calciumaluminate hydrate formation, portlandite dehydroxylation and calcite decarbonation. The influence of curing time and metakaolinite content were estimated. The reduction in portlandite content was observed in PC–BKS composites opposite to that found in the reference PC system. Compressive strength uptakes were observed in PC–BKS composites relative to that of reference PC system. BKS is characterized as effective pozzolanic material giving cement composites of high performance. The above findings were confirmed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) results.
1. Caijun, S, Jimenez, AF, Palomo, A. 2011 New cements for 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 41:750–763. .
2. Mojumdar, SC. 2001 Processing-moisture resistance and thermal analysis of macrodefect-free materials. J Therm Anal Calorim. 64:1133–1139. .
3. Palou, M, Majling, J, Dováľ, M, Kozánková, J, Mojumdar, SC. 2005 Formation and stability of crystallohydrates in the non-equilibrium system during hydration SAB cements. Ceramics Silikaty. 49:230–236.
4. Souza, PSL, Molin, DCCD. 2005 Viability of using calcined clays from industrial by-products as pozzolans of high reactivity. Cem Concr Res. 35:1993–1998. .
5. Papadakis, VG, Tsimas, S. 2002 Supplementary cementing materials in concrete part I: efficiency and design. Cem Concr Res. 32:1035–1041.
6. Rahhal, V, Talero, R. 2009 Fast physics–chemical and calorimetric characterization of natural pozzolans and other aspects. J Therm Anal Calorim. 99:479–486. .
7. Thomas, MDA, Shehata, MH, Shashiprakash, SG, Hopkins, DS, Cail, K. 1999 Use of ternary cementitious systems containing silica fume and fly ash in concrete. Cem Concr Res. 29:1207–1214. .
8. Ashraf, M, Khan, AN, Ali, Q, Mirza, J, Goyal, A, Anwar, AM. 2009 Physico–chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Constr Build Mater. 23:2207–2213. .
9. Gesoglu, M, Güneyisi, E, Özbay, E. 2009 Properties of self-compacting concretes made with binary, ternary and quaternary cementitious blends of fly ash, blastfurnace slag and silica fume. Constr Build Mater. 23:1847–1854. .
10. da Cunha, AL, Goncalves, JP, Büchler, PM, Dweck, J. 2008 Effect of metakaolin pozzolanic activity in the early stages of cement type II paste and mortar hydration. J Therm Anal Calorim. 92:115–119. .
11. Talero, R, Rahhal, V. 2009 Calorimetric comparison of Portland cements containing silica fume and metakaolin. Is silica fume, like metakaolin characterized by pozzolanic activity that is more specific than generic?. J Therm Anal Calorim. 96:383–393. .
12. Moser, RD, Jayapalan, AR, Garas, VY, Kurtis, KE. 2010 Assessment of binary and ternary blends of metakaolin and class C fly ash for alkali–silica reaction mitigation in concrete. Cem Concr Res. 40:1664–1672. .
13. Schebl, SS. 2010 Development of new efficient premixed blended metakaolin–cementitious fireproofing compounds. Cement Wapno Beton. 15: /77 279–288.
14. Cassagnabere, F, Mouret, M, Escadeillas, G, Broillard, P. 2010 Metakaolin, a solution for the precast industry to limit the clinker content in concrete: mechanical aspects. Constr Build Mater. 24:1109–1118. .
15. Shekarchi, M, Benakdas, A, Bakhshi, M, Mirdamadi, A, Mobasher, B. 2010 Transport properties in metakaolin blended concrete. Constr Build Mater. 24:2217–2223. .
16. Bakolas, A, Aggelakopoulou, E, Moropoulou, A, Anagnostopoulou, S. 2006 Evaluation of pozzolanic activity and physico-mechanical characteristics in metakaolin-lime pastes. J Therm Anal Calorim. 84:157–163. .
17. Samet, B, Mnif, T, Chaabouni, M. 2007 Use of kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cem Concr Comp. 29:741–749. .
18. Parande, AK, Babu, BR, Karthik, MA, Kumaar, D, Palaniswamy, N. 2008 Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr Build Mater. 22:127–134. .
19. Chakchouk, A, Trifi, L, Samet, B, Bouaziz, S. 2009 Formulation of blended cement: effect of process variables on clay pozzolanic activity. Constr Build Mater. 23:1365–1373. .
20. Bich, CH, Ambroise, J, Pera, J. 2009 Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 44:194–200. .
21. Sha W . Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement. In: Anson M, Ko JM, Lam ESS, editors. Proceedings of the international conference on advances in building technology (vol. 1). Hong Kong: ABT; 2002. p. 881–888.
22. Asbridge, AH, Jones, TR, Osborne, GJ. High performance metakaolin concrete: results of large scale trials in aggressive environments Dhir, RK, Hewlett, PC, eds. Proceedings of the international conference on concrete in the service of mankind. Dundee: Radical Concrete Technology; 1996 13–24.
23. Caldarone, MA, Gruber, KA, Burg, RG. 1994 High reactivity metakaolin: a new generation mineral admixture. Concr Int. 16:37–40.
24. Frias, M, Cabrera, J. 2000 Pore size distribution and degree of hydration of metakaolin–cement pastes. Cem Concr Res. 30:561–569. .
25. Rojas, MF, de Rojas, MIS. 2005 Influence of metastable hydrated phases on the pore size distribution and degree of hydration of metakaolin-blended cements cured at 60°C. Cem Concr Res. 35:1292–1298. .
26. Siddique, R, Klaus, J. 2009 Influence of metakaolin on the properties of mortars and concrete: a review. Appl Clay Sci. 44:194–200. .
27. Khatib, JM, Wild, S. 1996 Pore size distribution of metakaolin paste. Cem Concr Res. 26:1545–1553. .
28. Khater, AM. 2010 Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution. Ceramics Silikaty. 54:325–333.
29. Jerga J , Halas P. Ingress of chloride into the prestressed concrete structure. In: Proceedings of the 5th international conference on concrete. Prague: ICC; 1990. p. 400–404.
30. Jerga, J. 2004 Physico-mechanical properties of carbonated concrete. Constr Build Mater. 18:645–652. .
31. Badogiannis, E, Tsivilis, S. 2009 Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cem Concr Comp. 31:128–133. .
32. Badogiannis, E, Kakali, G, Dimopoulou, G, Chaniotakis, E, Tsivilis, S. 2005 Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Comp. 27:197–203. .
33. Kraus I , Uhlík P, Dubíková, M, Manfredini T, Pavlíková J, Šucha V, Hanisková M, Honty M. Mineralogical, chemical and technological characterization of kaolin sands. In: Proceedings of the international conference Euroclay (book of abstracts). Modena: ICE; 2003. p. 160–161.
34. Krajči, L’, Janotka, I, Kraus, I, Jamnický, P. 2007 Burnt kaolin sand as pozzolanic material for cement hydration. Ceramics Silikaty. 51:217–224.
35. Janotka I , Krajči L’, Kuliffayová M, Kraus I. Metakaolin sand—a prospective substitute for Portland cement. In: Proceedings of the 4th mid-European clay conference MECC 2008. Zakopane: ECC; 2008. p. 72.
36. Janotka, I, Puertas, F, Palacios, M, Varga, C, Krajči, L’. 2010 Metakaolin sand—a promising addition for Portland cement. Mater de Constr. 60:73–88. .
37. STN EN 197-1 Cement. Part I: Composition, specifications and conformity criteria for common cements. 2002. Accessed 1 April 2002.
38. Eberl DD User’s guide to Rock Jock—a program for determining quantitative mineralogy from powder X-ray diffraction data. In: U.S. geological survey, open-file report 03-78; 2003. p. 47.
39. STN EN 196-3+A1. Methods of testing cements. Part 3: determination of setting time and soundness. 2009. Accessed 1 May 2009.
40. STN EN 196-1. Methods of testing cement. Part 1: determination of strength. 2005. Accessed 22 March 2005.
41. STN EN 196-2. Methods of testing cement. Part 2: chemical analysis of cement. 2005. Accessed 1 November 2005.
42. Bágeľ, Ľ, Živica, V. 1997 Relationship between pore structure and permeability of hardened cement mortars. Cem Concr Res. 27:1225–1235. .
43. Janotka I , Bágeľ Ľ. Bound water content, permeability and residual compressive strength at high temperatures. In: Dhir RK, editor. Proceedings of the 6th international symposium on global constructions and ultimate concrete opportunities, section: role of concrete in nuclear facilities. Dundee: GGBS; 2005. p. 51–58.