View More View Less
  • 1 Institute of Inorganic Chemistry of the AS CR, v.v.i, 250 68, Husinec-Řež, Czech Republic
  • | 2 Research Centre Řež, Ltd, 250 68, Husinec-Řež, Czech Republic
Restricted access

Abstract

A new method for the preparation of titania photocatalyst was proposed. Precursors of the photoactive titania were prepared from TiOSO4·nH2O solution by precipitation with ammonia and addition of H2O2 or HNO3, respectively. Methods of TG, DTA, ETA, EGA/MS detection and FTIR were used to characterize the thermal degradation of the titania precursor and to determine the optimal temperature to obtain the photoactive titania. ETA made it possible to characterize the microstructure development of the samples in the heating conditions.

  • 1. Yanagisawa, K, Ovenstone, J. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J Phys Chem B. 1999;103:7781 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Cheng, H, Ma, J, Zhao, Z, Qi, L. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater. 1995;7:663671. .

  • 3. Moser, J, Grätzel, M. Light-induced electron transfer in colloid semiconductor dispersions: single versus dielectronic reduction of acceptors by conduction-band electrons. J Am Chem Soc. 1983;105:65476555. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Anpo, M, Shima, T, Kodama, S, Kubokawa, Y. Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates. J Phys Chem. 1987;91:4305 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Kim, S-J, Park, S-D, Jeong, YH, Park, S. J Am Ceram Soc. 1999;82:927 .

  • 6. Zhang, Z, Wang, C-C, Zakaria, R, Ying, JY. Role of nanoparticle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:10871 .

  • 7. Uchida, H, Hirao, S, Torimoto, T, Kuwabata, S, Sakata, T, Mori, H, Yoneyama, H. Preparation and properties of size-quantized TiO2-particles immobilized in poly(vinyl pyrrolidinone) gel films. Langmuir. 1995;11:37253729. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Crisan, M, Braileanu, A, Crisan, D, Raileanu, M, Dragan, N, Mardare, D, Teoderescu, V, Ianculescu, A, Birjega, R, Dumitru, M. Thermal behaviour study of some sol–gel TiO2 based materials. J Therm Anal Calorim. 2008;92: 1 713. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Santacesaria, E, Tonello, M, Storti, G, Pace, RC, Carra, SJ. Kinetics of titanium dioxide precipitation by thermal hydrolysis. J Colloid Interface Sci. 1986;111:4453. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Matijevic, E, Budnick, M, Meites, L. Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution. J Colloid Interface Sci. 1977;61:302311. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Chemseddine, A, Moritz, T. Nanostructuring titania: control over nanocrystal structure, size, shape and organization. Eur J Inorg Chem. 1999;2:235245. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Bischoff, BL, Anderson, MA. Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem Mater. 1995;7:1772 .

  • 13. Gao, Y, Masuda, Y, Seo, W-S, Ohta, H, Koumoto, K. TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceramics International. 2004;30:13651368. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ryu, YB, Jung, WY, Lee, MS, Jeong, ED, Kim, HG, Yang, JS, Lee, G-D, Park, SS, Hong, S-S. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using basic additive and their photocatalytic activity on the decomposition of orange II. J Phys Chem Solids. 2008;69:14571460. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Balek, V, Tölgyessy, J. Emanation thermal analysis and other radiometric emanation methods Svehla, G, eds. Wilson and Wilson’s comprehensive analytical chemistry part XIIC. Amsterdam: Elsevier Science Publishers; 1984 304.

    • Search Google Scholar
    • Export Citation
  • 16. Balek, V, Brown, ME. Less common techniques Brown, ME, eds. Handbook on thermal analysis and calorimetry, Vol. 1 Chapter 9. Amsterdam: Elsevier Science; 1998 445.

    • Search Google Scholar
    • Export Citation
  • 17. Ziegler, JF, Biersack, JP, Littmark, U. The stopping and range of ions in solids. New York: Pergamon Press; 1985.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)