View More View Less
  • 1 University of Alexander Dubček in Trenčín, Študentská 2, 911 50, Trenčín, Slovak Republic
  • | 2 Vitrum Laugaricio (VILA)—Joint Glass Center of the Institute of Inorganic Chemistry SAS, Faculty of Chemical and Food Technology STU, and RONA Lednické Rovne, University of Alexander Dubček in Trenčín, Študentská 2, 911 50, Trenčín, Slovak Republic
  • | 3 Faculty of Industrial Technologies, University of Alexander Dubček in Trenčín, I. Krasku 1809/34, 020 09, Púchov, Slovak Republic
Restricted access

Abstract

Crystallization kinetics of Al2O3–Yb2O3 glass microspheres with two different compositions was studied by DTA. Heating rates ranging from 3 to 15 °C min−1 were used for DTA measurement. The DTA curves obtained were transformed into the dependence of conversion, α, on temperature. The model f(α) = αn(1 − α)m, i.e., the model of Sestak and Berggren, was found suitable for the description of crystallization kinetics. The best fit of experimental data was obtained if the full set of measured conversion degrees was used for calculation of kinetic parameters. In this manner, the following results were obtained: A = 6.10 × 1020 min−1, E = 4.68 × 105 J mol−1, n = 0.634, m = 1.037 for 30 wt% Al2O3–70 wt% Yb2O3 glass, and A = 6.98 × 1025 min−1, E = 5.97 × 105 J mol−1, n = 0.562, m = 0.975 for 45 wt% Al2O3–55 wt% Yb2O3 glass.

  • 1. Prnová, A, Karell, R, Galusek, D. The preparation of binary Al2O3–Y2O3 glass microspheres by flame synthesis from powder oxide precursors. Ceramics-Silikáty. 2008;52:109114.

    • Search Google Scholar
    • Export Citation
  • 2. Prnová, A, Lichvár, P, Galusek, D, Galusková, D, Hnatko, M. Flame synthesis of aluminate glass microspheres. Glass Technol Eur J Glass Sci Technol A. 2010;51:248252.

    • Search Google Scholar
    • Export Citation
  • 3. Mošner, P, Vosejpková, K, Koudelka, L. Thermal behaviour and properties of Na2O–TiO2–P2O5 glasses. J Therm Anal Calorim. 2009;96:469474. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Li, YH, Liang, KM, Xu, B, Cao, JW. Crystallization mechanism and microstructure evolution of Li2O–Al2O3–SiO2 glass-ceramics with Ta2O5 as nucleating agent. J Therm Anal Calorim. 2010;101:941948. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Biswas, K, Sontakke, AD, Majumder, M, Annapurn, K. Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass. J Therm Anal Calorim. 2010;101:143151. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Majhi, K, Varma, KBR. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Therm Anal Calorim. 2009;98:731736. .

  • 7. Speyer, RF, Risbud, SH. Methods for determination of activation energy of glass crystallisation from thermal analysis. Phys Chem Glasses. 1983;24:2630.

    • Search Google Scholar
    • Export Citation
  • 8. Šimon, P, Nemčeková, K, Jóna, E, Plško, A, Ondrušová, D. Thermal stability of glass evaluated by the induction period of crystallization. Thermochim Acta. 2005;428:1114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Altorfer, R. Estimation of kinetic parameters from conversion curves, determined at constant heating rate. Thermochim Acta. 1978;24:1737. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Šesták, J. Heat, thermal analysis and society. 1 Hradec Králové: Nucleus HK; 2004.

  • 11. Šesták, J, Šatava, V, Wendlandt, WW. The study of heterogeneous processes by thermal analysis. Thermochim Acta. 1973;7:333356. .

  • 12. Šimon, P. Isoconversional methods. J Therm Anal Calorim. 2004;76:123132. .

  • 13. Farjas, J, Roura, P. Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757766. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Farjas, J, Roura, P. Isoconversional analysis of solid state transformations. A critical review. Part II. Complex transformations. J Therm Anal Calorim. 2011;105:767773. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0