View More View Less
  • 1 Institute of Physical Chemistry, University of Wien, Währinger Strasse 42, 1090, Vienna, Austria
  • | 2 Department of Materials Science and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
Restricted access

Abstract

The liquid state is one of the three principal states of matter and arguably the most important one, the main reasons being the following: (I) the majority of chemical synthesis reactions are liquid-state reactions; (II) separation processes, such as distillation, extraction, and fractional crystallization, are based on vapor–liquid equilibria, liquid–liquid equilibria, and solid–liquid equilibria, respectively, all involving multicomponent mixtures/solutions; (III) when focusing on water as solvent, we note that it is the most abundant substance on the surface of the earth, and being the principal constituent (about 70% by weight) of all living organisms, it is essential for life as we know it. Thus, it is not surprising at all that experimental as well as theoretical work on nonelectrolyte solutions in general, and on aqueous solutions of nonelectrolytes in particular, have held prominent positions in (bio-)physical chemistry for more than a century. The insights thereby gained have contributed decisively to build the formal structure of chemical thermodynamics and have paved the way for the development of practically useful real-solution models needed in chemical engineering. In this review, first the thermodynamic formalism relevant for solubility studies as well as a critical discussion of some popular approximations will be presented concisely. Estimation methods for auxiliary quantities, such as virial coefficients and partial molar volumes at infinite dilution, will be briefly indicated, followed by a summary of rational strategies for data reduction and data correlation. Finally, a few eclectically chosen results obtained for dilute aqueous solutions of nonelectrolytes will be linked to hydrophobic effects, which are generally accepted to play an important role in a wide variety of biological processes.

  • 1. Hildebrand, JH, Scott, RL. The solubility of nonelectrolytes. 3 New York: Reinhold Publishing Corporation; 1950.

  • 2. Hildebrand, JH, Prausnitz, JM, Scott, RL. Regular and related solutions. The solubility of gases, liquids, and solids. New York: Van Nostrand Reinhold Company; 1970.

    • Search Google Scholar
    • Export Citation
  • 3. Prausnitz, JM, Lichtenthaler, RN, de Azevedo, EG. Molecular thermodynamics of fluid phase equilibria. 3 Upper Saddle River: Prentice Hall PTR; 1999.

    • Search Google Scholar
    • Export Citation
  • 4. Solubility Data Series (IUPAC), vol 1. Oxford: Pergamon; 1979 and later; and Solubility Data Series (IUPAC-NIST), vol 66. J Phys Chem Ref Data. 1998;27:1289470, and later.

    • Search Google Scholar
    • Export Citation
  • 5. Wilhelm, E. Precision methods for the determination of the solubility of gases in liquids. CRC Crit Rev Anal Chem. 1985;16:129175. .

  • 6. Wilhelm, E. Thermodynamics of nonelectrolyte solubility Letcher, TM, eds. Development and applications in solubility. Cambridge: The Royal Society of Chemistry/IACT; 2007 318. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Franks F , editor. Water: a comprehensive treatise, vols I–VII, New York: Plenum Press; 1972 through 1982.

  • 8. Wilhelm, E, Battino, R, Wilcock, RJ. Low-pressure solubility of gases in liquid water. Chem Rev. 1977;77:219262. .

  • 9. Levy, Y, Onuchic, JN. Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct. 2006;35:389415. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Ball, P. Water as an active constituent in cell biology. Chem Rev. 2008;108:74108. .

  • 11. Weir RD , de Loos TW, editors. Measurement of the thermodynamic properties of multiple phases, Experimental thermodynamics, vol VII. Amsterdam: Elsevier; 2005.

    • Search Google Scholar
    • Export Citation
  • 12. Letcher TM , editor. Development and applications in solubility, Cambridge: The Royal Society of Chemistry; 2007.

  • 13. Wilhelm, E. Caloric properties of dilute nonelectrolyte solutions: a success story. Thermochim Acta. 1997;300:159168. .

  • 14. Wilhelm, E. Low-pressure solubility of gases in liquids Weir, RD, de Loos, TW, eds. Measurement of the thermodynamic properties of multiple phases. Experimental thermodynamics. VII Amsterdam: Elsevier; 2005 137176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Wilhelm, E. What you always wanted to know about heat capacities, but were afraid to ask. J Solut Chem. 2010;39:17771818. .

  • 16. Pratt, LR, Chandler, D. Theory of the hydrophobic effect. J Chem Phys. 1977;67:36833704. .

  • 17. Tanford, C. The hydrophobic effect: formation of micelles and biological membranes. 2 New York: Wiley; 1980.

  • 18. Ben-Naim, A. Hydrophobic interactions. New York: Plenum Press; 1980 .

  • 19. Ben-Naim, A. Solvation thermodynamics. New York: Plenum Press; 1987.

  • 20. Privalov, PL, Gill, SJ. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191234. .

  • 21. Privalov, PL, Gill, SJ. The hydrophobic effect: a reappraisal. Pure Appl Chem. 1989;61:10971104. .

  • 22. Blokzijl, W, Engberts, JBFN. Hydrophobic effects. Opinions and facts. Angew Chem Int Ed Engl. 1993;32:15451579. .

  • 23. Lum, K, Chandler, D, Weeks, JD. Hydrophobicity at small and large length scales. J Phys Chem B. 1999;103:45704577. .

  • 24. Hummer, G, Garde, S, Garcia, AE, Pratt, LR. New perspectives on hydrophobic effects. Chem Phys. 2000;258:349370. .

  • 25. Southall, NT, Dill, KA. The mechanism of hydrophobic solvation depends on solute radius. J Phys Chem B. 2000;104:13261331. .

  • 26. Southall, NT, Dill, KA, Haymet, ADJ. The view of the hydrophobic effect. J Phys Chem B. 2002;106:521533. .

  • 27. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640647. .

  • 28. Patel, AJ, Varilly, P, Chandler, D. Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J Phys Chem B. 2010;114:16321637. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Paschek, D, Ludwig, R, Holzmann, J. Computer simulation studies of heat capacity effects associated with hydrophobic effects Wilhelm, E, Letcher, TM, eds. Heat capacities: liquids, solutions and vapours. Cambridge: The Royal Society of Chemistry; 2010 436456.

    • Search Google Scholar
    • Export Citation
  • 30. Van Ness, HC, Abbott, MM. Classical thermodynamics of nonelectrolyte solutions. New York: McGraw-Hill; 1982.

  • 31. Wilhelm, E. Dilute solutions of gases in liquids. Fluid Phase Equilib. 1986;27:233261. .

  • 32. Wilhelm, E. Determination of caloric quantities of dilute liquid solutions. Thermochim Acta. 1987;119:1733. .

  • 33. Wilhelm, E. Thermodynamics of solutions: selected aspects. Thermochim Acta. 1990;162:4357. .

  • 34. Wilhelm E . The solubility of gases in liquids. Thermodynamic considerations. In: Battino R, editor. Nitrogen and air. Solubility data series (IUPAC), vol 10. Oxford: Pergamon Press; 1982. p. XXXXVIII.

    • Search Google Scholar
    • Export Citation
  • 35. Wilhelm, E. Solubility of gases in liquids: a critical review. Pure Appl Chem. 1985;57:303323. .

  • 36. Wilhelm, E. Thermodynamics of solutions, especially dilute solutions of nonelectrolytes Teixeira-Dias, JJC, eds. Molecular liquids: new perspectives in physics and chemistry. Dordrecht: Kluwer Academic Publishers; 1992 175206.

    • Search Google Scholar
    • Export Citation
  • 37. Beutier, D, Renon, H. Gas solubilities near the solvent critical point. AIChE J. 1978;24:11221125. .

  • 38. Hayduk, W, Buckley, WD. Temperature coefficient of gas solubility for regular solutions. Can J Chem Eng. 1971;49:667671. .

  • 39. Van Ness, HC, Abbott, MM. Vapor-liquid equilibrium. Part VI. Standard state fugacities for supercritical components. AIChE J. 1979;25:645653. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Rettich, TR, Handa, YP, Battino, R, Wilhelm, E. Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328K. J Phys Chem. 1981;85:32303237. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Rettich, TR, Battino, R, Wilhelm, E. Solubility of gases in liquids. 22. High-precision determination of Henry’s law constants of oxygen in liquid water from T=274K to T=328K. J Chem Thermodyn. 2000;32:11451156. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Wilhelm, E, Battino, R. Partial molar heat capacity changes of gases dissolved in liquids Wilhelm, E, Letcher, TM, eds. Heat capacities: liquids, solutions and vapours. Cambridge: The Royal Society of Chemistry; 2010 457471.

    • Search Google Scholar
    • Export Citation
  • 43. Tominaga, T, Battino, R, Gorowara, HK, Dixon, RD, Wilhelm, E. Solubility of gases in liquids. 17. The solubility of He, Ne, Ar, Kr, H2, N2, O2, CO, CH4, and SF6 in tetrachloromethane at 283–318K. J Chem Eng Data. 1986;31:175180. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Bo S , Battino R, Wilhelm E. Solubility of gases in liquids. 19. Solubility of He, Ne, Ar, Xe, N2, O2, CH4, and SF6 in normal 1-alkanols n-ClH2l+1OH (1≤l≤11) at 298.15K. J Chem Eng Data. 1993;38:611616. Corrections: ibid. 1996;41:644.

    • Search Google Scholar
    • Export Citation
  • 45. Poling, BE, Prausnitz, JM, O’Connell, JP. The properties of gases and liquids. 5 New York: McGraw-Hill; 2001.

  • 46. Dymond JH , Marsh KN, Wilhoit RC, Wong KC. Virial coefficients of pure gases and mixtures. In: Frenkel M, Marsh KN, editors. Landolt–Börnstein Group IV physical chemistry, vol 21A: virial coefficients of pure gases, Heidelberg: Springer-Verlag; 2002.

    • Search Google Scholar
    • Export Citation
  • 47. Dymond JH , Marsh KN, Wilhoit RC. Virial coefficients of pure gases and mixtures. In: Frenkel M, Marsh KN, editors. Landolt–Börnstein Group IV physical chemistry, vol 21B: virial coefficients of mixtures, Heidelberg: Springer-Verlag; 2003.

    • Search Google Scholar
    • Export Citation
  • 48. Harvey, AH, Lemmon, EW. Correlation for the second virial coefficient of water. J Phys Chem Ref Data. 2004;33:369376. .

  • 49. Tsonopoulos, C, Dymond, JH. Second virial coefficients of normal alkanes, linear 1-alkanols (and water), alkyl ethers, and their mixtures. Fluid Phase Equilib. 1997;133:1134. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Moore, JC, Battino, R, Rettich, TR, Handa, YP, Wilhelm, E. Partial molar volumes of “gases” at infinite dilution in water at 298.15K. J Chem Eng Data. 1982;27:2224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Handa, YP, D’Arcy, PJ, Benson, GC. Partial molar volumes of gases dissolved in liquids. Part II. A dilatometer for measuring infinite-dilution partial molar volumes, and results for 40 liquid-gas systems. Fluid Phase Equilib. 1982;8:181196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Bignell, N. Partial molar volumes of atmospheric gases in water. J Phys Chem. 1984;88:54095412. .

  • 53. Biggerstaff, DR, Wood, RH. Apparent molar volumes of aqueous argon, ethylene, and xenon from 300 to 716K. J Phys Chem. 1988;92:19881994. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Pierotti, RA. A scaled particle theory of aqueous and nonaqueous solutions. Chem Rev. 1976;76:717726. .

  • 55. Wilhelm, E, Battino, R. Estimation of Lennard–Jones (6, 12) pair potential parameters from gas solubility data. J Chem Phys. 1971;55:40124017. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56. Wilhelm, E, Battino, R. On solvophobic interaction. J Chem Phys. 1972;56:563566. .

  • 57. Wilhelm, E. On the temperature dependence of the effective hard sphere diameter. J Chem Phys. 1973;58:35583569. .

  • 58. Schulze, G, Prausnitz, JM. Solubilities of gases in water at high temperatures. Ind Eng Chem Fundam. 1981;20:175177. .

  • 59. Raal, JD, Ramjugernath, D. Vapour-liquid equilibrium at low pressure Weir, RD, de Loos, TW, eds. Measurement of the thermodynamic properties of multiple phases. Experimental thermodynamics. VII Amsterdam: Elsevier; 2005 7187. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60. Richon, D, de Loos, TW. Vapour-liquid equilibrium at high pressure Weir, RD, de Loos, TW, eds. Measurement of the thermodynamic properties of multiple phases. Experimental thermodynamics. VII Amsterdam: Elsevier; 2005 89136. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61. Maurer, G, Pérez-Salado Kamps, Á. Solubility of gases in ionic liquids, aqueous solutions, and mixed solvents Letcher, TM, eds. Development and applications in solubility. Cambridge: The Royal Society of Chemistry; 2007 4158. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62. Matouš, J, Řehák, K, Novák, JP. Liquid-liquid equilibrium Weir, RD, de Loos, TW, eds. Measurement of the thermodynamic properties of multiple phases. Experimental thermodynamics. VII Amsterdam: Elsevier; 2005 177200. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63. Raal, JD, Ramjugernath, D. Measurement of limiting activity coefficients: non-analytical tools Weir, RD, de Loos, TW, eds. Measurement of the thermodynamic properties of multiple phases. Experimental thermodynamics. VII Amsterdam: Elsevier; 2005 339357. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64. Dohnal, V. Measurement of limiting activity coefficients using analytical tools Weir, RD, de Loos, TW, eds. Measurement of the thermodynamic properties of multiple phases. Experimental thermodynamics. VII Amsterdam: Elsevier; 2005 359381. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65. Clarke, ECW, Glew, DN. Evaluation of thermodynamic functions from equilibrium constants. Trans Faraday Soc. 1966;62:539547. .

  • 66. Benson, BB, D Krause Jr. Empirical laws for dilute aqueous solutions of nonpolar gases. J Chem Phys. 1976;64:689709. .

  • 67. Crovetto, R, Fernández-Prini, R, Japas, ML. Solubilities of inert gases and methane in H2O and D2O in the temperature range of 300 to 600K. J Chem Phys. 1982;76:10771086. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68. Schotte, W. Solubilities near the solvent critical point. AIChE J. 1985;31:154157. .

  • 69. Japas, ML, Levelt Sengers, JMH. Gas solubility and Henry’s law near the solvent’s critical point. AIChE J. 1989;35:705713. .

  • 70. D Krause Jr , Benson, BB. The solubility and isotopic fractionation of gases in dilute aqueous solutions. IIa. Solubilities of the noble gases. J Solut Chem. 1989;18:823873. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71. Hnedkovský, L, Wood, RH, Majer, V. Volumes of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 298.15K to 705K and pressures to 35MPa. J Chem Thermodyn. 1996;28:125142. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72. Biggerstaff, DR, White, DE, Wood, RH. Heat capacities of aqueous argon from 306 to 578K. J Phys Chem. 1985;89:43784381. .

  • 73. Biggerstaff, DR, Wood, RH. Apparent molar heat capacities of aqueous argon, ethylene, and xenon at temperatures up to 720K and pressures to 33MPa. J Phys Chem. 1988;92:19942000. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74. Hnedkovský, L, Wood, RH. Apparent molar heat capacities of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 304K to 704K at a pressure of 28MPa. J Chem Thermodyn. 1997;29:731747. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75. Rettich, TR, Battino, R, Wilhelm, E. Solubility of gases in liquids. 18. High-precision determination of Henry fugacities for argon in liquid water at 2 to 40°C. J Solut Chem. 1992;21:9871004. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76. Olofsson, G, Oshodj, AA, Qvarnström, E, Wadsö, I. Calorimetric measurements on slightly soluble gases in water. Enthalpies of solution of helium, neon, argon, krypton, xenon, and oxygen at 288.15, 298.15, and 308.15K. J Chem Thermodyn. 1984;16:10411052. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77. Dec, SF, Gill, SJ. Enthalpies of aqueous solutions of noble gases at 25°C. J Solut Chem. 1985;14:417429. .

  • 78. Benson, BB, D Krause Jr, Peterson, MA. The solubility and isotopic fractionation of gases in dilute aqueous solutions. I. Oxygen. J Solut Chem. 1979;8:655690. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79. Gill, SJ, Wadsö, I. Flow-microcalorimetric techniques for solution of slightly soluble gases. Enthalpy of solution of oxygen in water at 298.15K. J Chem Thermodyn. 1982;14:905919. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80. Dec, SF, Gill, SJ. Steady-state gas dissolution flow microcalorimeter for determination of heats of solution of slightly soluble gases in water. Rev Sci Instrum. 1984;55:765772. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81. Dec, SF, Gill, SJ. Heats of solution of gaseous hydrocarbons in water at 25°C. J Solut Chem. 1984;13:2741. .

  • 82. Naghibi, H, Dec, SF, Gill, SJ. Heat of solution of methane in water from 0 to 50°C. J Phys Chem. 1986;90:46214623. .

  • 83. Dec, SF, Gill, SJ. Heats of solution of gaseous hydrocarbons in water at 15, 25, and 35°C. J Solut Chem. 1985;14:827836. .

  • 84. Frank, HS, Evans, MW. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys. 1945;13:507532. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85. De Jong, PHK, Wilson, JE, Neilson, GW, Buckingham, AD. Hydrophobic hydration of methane. Mol Phys. 1997;91:99103. .

  • 86. Guillot, B, Guissani, Y, Bratos, S. A computer-simulation study of hydrophobic hydration of rare gases and of methane. I. Thermodynamic and structural properties. J Chem Phys. 1991;95:36433648. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87. Hefter GT , Tomkins RPT, editors. The experimental determination of solubilities, New York: Wiley; 2003.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 2 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 4 0 0
Dec 2021 0 0 0