View More View Less
  • 1 GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
  • | 2 Faculté des Sciences de Sfax, Laboratoire de Chimie Inorganique, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia
Restricted access

Abstract

Suitable thermal treatment of metal organic precursors is a key process to obtain oxide films. To this purpose, non-isothermal model-free predictions are specially suited. In this article we will explore the ability of these methods to provide an accurate prediction of the evolution of the decomposition of yttrium trifluoroacetate, a precursor used in the synthesis of YBaCuO superconducting thin-films. A good agreement has been obtained between the predicted and the measured reaction courses.

  • 1. Schwartz, RW, Schneller, T, Waser, R. Chemical solution deposition of electronic oxide films. C R Chim. 2004;7:433461. .

  • 2. Araki, T, Hirabayashi, I. Review of a chemical approach to YBa2Cu3O7−x-coated superconductors—metalorganic deposition using trifluoroacetates. Supercond Sci Technol. 2003;16:R71R94. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Banger, KK, Yamashita, Y, Mori, K, Peterson, RL, Leedham, T, Rickard, J, Sirringhaus, H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat Mater. 2011;10:4550. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Kim, M, Kanatzidis, MG, Facchetti, A, Marks, TJ. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater. 2011;10:382388. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Farjas J , Roura P. Isoconversional analysis of solid state transformations: a critical review. III isothermal and non isothermal predictions. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Vyazovkin, S, Wight, CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:82798284. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Vyazovkin, S. Computational aspects of kinetic analysis: part C. The ICTAC kinetics project—The light at the end of the tunnel?. Thermochim Acta. 2000;355:155163. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95101. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Roduit, B, Folly, P, Berger, B, Mathieu, J, Sarbach, A, Andres, H, Ramin, M, Vogelsanger, B. Evaluating SADT by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93:153161. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Farjas, J, Roura, P. Isoconversional analysis of solid state transformations: a critical review I single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757766. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Fujihara, S, Koji, S, Kadota, Y, Kimura, T. Phase-selective pyrolysis and Pr3+luminescence in a YF3–Y2O3 system from a single-source precursor. J Am Ceram Soc. 2004;87:16591662. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Llordés, A, Zalamova, K, Ricart, S, Palau, A, Pomar, A, Puig, T, Hardy, A, Van Bael, MK, Obradors, X. Evolution of metal-trifluoroacetate precursors in the thermal decomposition toward high-performance YBa2Cu3O7 superconducting films. Chem Mater. 2010;22:16861694. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Tokunaga Y , et al. High critical current YBCO films using advanced TFA-MOD process. Phys C Supercond. 2004; 412414, Part 2:910–915.

    • Search Google Scholar
    • Export Citation
  • 14. Wesolowski, DE, Yoshizumi, M, Cima, MJ. Understanding the MOD process between decomposition and YBCO formation. IEEE Trans Appl Supercond. 2007;17:33513354. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Eloussifi H , Farjas J, Roura P, Camps J, Dammak M, Ricart S, Puig T, Obradors X. Evolution of yttrium trifluoroacetate thermal decomposition. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Mosiadz M , Juda K, Hopkins S, Soloducho J, Glowacki B. An in-depth in situ IR study of the thermal decomposition of yttrium trifluoroacetate hydrate. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Vyazovkin, S. Thermal analysis. Anal Chem. 2010;82:49364949. .

  • 18. Vyazovkin, S, Wight, CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125149. .

  • 19. Vyazovkin, S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393402. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Vyazovkin, S. On the phenomenon of variable activation energy for condensed phase reactions. New J Chem. 2000;24:913917. .

  • 21. Wilburn, FW. Kinetics of overlapping reactions. Thermochim Acta. 2000;354:99105. .

  • 22. Farjas, J, Roura, P. Isoconversional analysis of solid state transformations: a critical review. II complex transformations. J Therm Anal Calorim. 2011;105:767773. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Roduit, B, Dermaut, W, Lunghi, A, Folly, P, Berger, B, Sarbach, A. Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions. J Therm Anal Calorim. 2008;93:163173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Roduit, B, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143152. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:6869. .

  • 26. Friedman, HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183195.

    • Search Google Scholar
    • Export Citation
  • 27. Farjas, J, Butchosa, N, Roura, P. A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calorim. 2010;102:615625. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Roura, P, Farjas, J. Analysis of the sensitivity and sample—furnace thermal-lag of a differential thermal analyzer. Thermochim Acta. 2005;430:115122. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Galwey, AK, Brown, ME. Chapter 3 kinetic background to thermal analysis and calorimetry Brown, ME, eds. Handbook of thermal analysis and calorimetry. vol 1. Amsterdam: Elsevier; 1998 147224.

    • Search Google Scholar
    • Export Citation
  • 30. Vyazovkin, S, Burnham, AK, Criado, JM, Pérez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta. 2011;520:119. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. JCPDS card no. 70-1935, The International Centre for Diffraction Data, Newton Square, PA.

  • 32. JCPDS card no. 65-3178, The International Centre for Diffraction Data, Newton Square, PA.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)