Authors:
Alfréd MenyhárdLaboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3. H. ép. I, Budapest H-1111, Hungary
Hungarian Academy of Sciences, Chemical Research Centre, Institute of Environmental and Material Chemistry, Pusztaszeri út 59-67, Budapest H-1025, Hungary

Search for other papers by Alfréd Menyhárd in
Current site
Google Scholar
PubMed
Close
,
Gábor DoraLaboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3. H. ép. I, Budapest H-1111, Hungary
Hungarian Academy of Sciences, Chemical Research Centre, Institute of Environmental and Material Chemistry, Pusztaszeri út 59-67, Budapest H-1025, Hungary

Search for other papers by Gábor Dora in
Current site
Google Scholar
PubMed
Close
,
Zsuzsanna HorváthLaboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3. H. ép. I, Budapest H-1111, Hungary
Hungarian Academy of Sciences, Chemical Research Centre, Institute of Environmental and Material Chemistry, Pusztaszeri út 59-67, Budapest H-1025, Hungary

Search for other papers by Zsuzsanna Horváth in
Current site
Google Scholar
PubMed
Close
,
Gábor FaludiLaboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3. H. ép. I, Budapest H-1111, Hungary
Hungarian Academy of Sciences, Chemical Research Centre, Institute of Environmental and Material Chemistry, Pusztaszeri út 59-67, Budapest H-1025, Hungary

Search for other papers by Gábor Faludi in
Current site
Google Scholar
PubMed
Close
, and
József VargaLaboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3. H. ép. I, Budapest H-1111, Hungary
Hungarian Academy of Sciences, Chemical Research Centre, Institute of Environmental and Material Chemistry, Pusztaszeri út 59-67, Budapest H-1025, Hungary

Search for other papers by József Varga in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Abstract

Crystallization kinetics of β-nucleated isotactic polypropylene (β-iPP) under isothermal conditions were investigated by differential scanning calorimetry. iPP was nucleated by a trisamide derivative, namely tris-2,3-dimethyl-hexylamide of trimesic acid (TATA). In the presence of TATA possessing dual nucleating ability, the formation of the α- and β-form occurs simultaneously. An isothermal stepwise crystallization method is suggested in this study, which can separate the crystallization process of β- and α-iPP and consequently their crystallization kinetics can be evaluated separately. The results indicated that the mechanism of crystallization changes in temperature especially in the vicinity of the upper critical temperature of the formation of the β-phase. In addition, it was found that the ratio of the growth rates of β- and α-modification determines the characteristics of crystallization and influences the apparent rate constant of crystallization of both polymorphs.

  • 1. Padden, FJ, Keith, HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959;30:14791484. .

  • 2. Varga, J. β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Phys. 2002;B41:11211171.

    • Search Google Scholar
    • Export Citation
  • 3. Brückner, S, Meille, SV, Petraccone, V, Pirozzi, B. Polymorphism in isotactic polypropylene. Prog Polym Sci. 1991;16:361404. .

  • 4. Lotz, B, Wittmann, JJ, Lovinger, AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:49794992. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Juhász, P, Belina, K. Crystallization and morphology of propylene/pentene random copolymers. J Reinf Plast Compos. 2001;20:211.

  • 6. Krache, R, Benavente, R, Lopez-Majada, JM, Perena, JM, Cerrada, ML, Perez, E. Competition between α, β, and γ polymorphs in beta-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40:68716878. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Leugering, HJ. Einfluss der Kristallstuktur und Überstuktur auf einige Eigeschaften von Polypropylen. J Macromol Chem. 1967;109:204216. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Shi, GY, Zhang, XD, Qiu, ZX. Crystallization kinetics of β-phase poly(propylene). Macromol Chem Phys. 1992;193:583591. .

  • 9. Varga, J, Mudra, I, Ehrenstein, GW. Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74:23572368. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Menyhárd, A, Varga, J, Molnár, G. Comparison of different β-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83:625630. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Keda N , Kobayashi T, Killough L. Novel β-nucleator for polypropylene. Polypropylene ‘96. World Congress. 1996.

  • 12. Cermak, R, Obadal, M, Ponizil, P, Polaskova, M, Stoklasa, K, Lengalova, A. Injection-moulded α- and β-polypropylenes: I. Structure vs. processing parameters. Eur Polym J. 2005;41:18381845. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Dong, M, Guo, Z, Yu, J, Su, Z. Crystallization behavior and morphological development of isotactic polypropylene with an aryl amide derivative as β-form nucleating agent. J Polym Sci Part B. 2008;46:17251733. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Mohmeyer, N, Schmidt, HW, Kristiansen, PM, Altstadt, V. Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules. 2006;39:57605767. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Varga, J, Stoll, K, Menyhárd, A, Horváth, Z. Crystallization of isotactic polypropylene in the presence of a beta-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121:14691480. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Dou, Q. Effect of calcium salts of glutaric acid and pimelic acid on the formation of β crystalline form in isotactic polypropylene. Polym Plast Technol Eng. 2008;47:851857. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Dou, Q, Lu, QL. Effect of magnesium malonate on the formation of the β crystalline form in isotactic polypropylene. J Vinyl Addit Technol. 2008;14:136141. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Dou, Q, Lu, QL, Li, HD. Effect of metallic salts of malonic acid on the formation of β-crystalline form in isotactic polypropylene. J Macromol Sci Part B Phys. 2008;47:900912. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Dou, Q, Lu, Q. Effect of calcium malonate on the formation of β crystalline form in isotactic poly(propylene). Polym Adv Technol. 2008;19:15221527.

    • Search Google Scholar
    • Export Citation
  • 20. Zhang, Z, Tao, Y, Yang, Z, Mai, K. Preparation and characteristics of nano-CaCO3 supported β-nucleating agent of polypropylene. Eur Polym J. 2008;44:19551961. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Zhang, Z, Wang, C, Yang, Z, Chen, C, Mai, K. Crystallization behavior and melting characteristics of PP nucleated by a novel supported β-nucleating agent. Polymer. 2008;49:51375145. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Xiao, W, Wu, P, Feng, J. Effect of β-nucleating agents on crystallization and melting behavior of isotactic polypropylene. J Appl Polym Sci. 2008;108:33703379. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Wunderlich, B. Macromolecular physics. London: Academic Press; 1979.

  • 24. Avrami, M. Kinetics of phase change I. General theory. J Chem Phys. 1939;7:1103 .

  • 25. Avrami, M. Kinetics of phase change II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212 .

  • 26. Kolmogoroff, AN. On the statistics of crystallization process in metals. Isvest Akad Nauk SSSR Ser Math. 1937;3:335.

  • 27. Evans, UR. The Laws of expanding circles and spheres in relation of the lateral growths of surface films and the grain size of metals. Trans Faraday Soc. 1945;41:365 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Varga, J. Crystallization, melting and supermolecular structure of isotactic polypropylene Karger-Kocsis, J, eds. Polypropylene: structure, blends and composites. 1 London: Chapmann&Hall; 1995 56115. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Wei, ZY, Zhang, WX, Chen, GY, Liang, JC, Chang, Y, Liu, LA, Wang, P, Sun, JC. Crystallization behavior of isotactic polypropylene/magnesium salt whisker composites modified by compatibilizer PP-g-MAH. J Therm Anal Calorim. 2011;103:701710. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Wei, ZY, Zhang, WX, Chen, GY, Liang, JC, Yang, S, Wang, P, Liu, LA. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Chen, YH, Mao, YM, Li, ZM, Hsiao, BS. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43:67606771. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Varga, J. Melting memory effect of the β-modification of polypropylene. J Therm Anal Calorim. 1986;31:165172. .

  • 33. Monasse, B, Haudin, JM. Growth transition and morphology change in polypropylene. Colloid Polym Sci. 1985;263:822831. .

  • 34. Varga, J, Garzó, G. Isothermal crystallization of the β-modification of polypropylene. Acta Chim Acad Sci Hung. 1991;128:303317.

    • Search Google Scholar
    • Export Citation
  • 35. Varga, J, Fujiwara, Y, Ille, A. βα-Bifurcation of growths during the spherulitic crystallization of polypropylene. Period Polytech Chem Eng. 1990;34:255271.

    • Search Google Scholar
    • Export Citation
  • 36. De Santis, F, Adamovsky, S, Titomanlio, G, Schick, C. Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules. 2006;39:25622567. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. De Santis, F, Adamovsky, S, Titomanlio, G, Schick, C. Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules. 2007;40:90269031. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Varga, J, Menyhárd, A. Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40:24222431. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2022 3 0 0
Nov 2022 3 0 0
Dec 2022 0 0 0
Jan 2023 6 0 1
Feb 2023 4 0 0
Mar 2023 1 0 0
Apr 2023 0 0 0