View More View Less
  • 1 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, Mexico, DF, Mexico
  • | 2 Departamento de Ingeniería Metalúrgica, Escuela Superior de Ingeniería Química e Industrias Extractivas, IPN, UPALM, Av. Instituto Politécnico Nacional s/n, CP 07738, Mexico, DF, Mexico
Restricted access

Abstract

CO2 removal from flue gas has been proposed as one of the most reliable solutions to mitigate global greenhouse emissions. Lithium ceramics are among several materials that have potential applications in CO2 removal. Lithium ceramics are able to chemisorb CO2 in a wide temperature range, presenting several interesting properties. All lithium ceramics present a similar CO2 chemisorption reaction mechanism that has been described at the micrometric scale. However, there are several issues that have not been fully elucidated. The aim of this study is to re-analyze different experiments related to the CO2 chemisorption on lithium ceramics and to propose how different factors control this process. This study focuses on diffusion controlled CO2 chemisorption, which has been shown to be the limiting step of the CO2 chemisorption process. Diffusion controlled CO2 chemisorption appears to be mainly influenced by the chemical composition of a product’s external shell.

  • 1. Schwartz, SE. Uncertainty in climate sensitivity: causes, consequences, challenges. Energy Environ Sci. 2008;1:430453. .

  • 2. FM Orr Jr . CO2 capture and storage: are we ready?. Energy Environ Sci. 2009;2:449458. .

  • 3. Hasib-ur-Rahman, M, Siaj, M, Larachi, F. Ionic liquids for CO2 capture-development and progress. Chem Eng Process. 2010;49:313322. .

  • 4. Wang, S, Yan, S, Ma, X, Gong, J. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci. 2011;4:38053819. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Yu, KMK, Curcic, I, Gabriel, J, Tsang, SCE. Recent advances in CO2 capture and utilization. ChemSusChem. 2008;1:893899. .

  • 6. Zhao, HY, Cao, Y, Lineberry, Q, Pan, WP. Evaluation of CO2 adsorption capacity of solid sorbents. J Therm Anal Calorim. 2011;106:199205. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Lee, KB, Beaver, MG, Caram, HS, Sircar, S. Reversible chemisorbents for carbon dioxide and their potential applications. Ind. Eng. Chem Res. 2008;47:80488062. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Zhao, C, Chen, X, Zhao, C. Study on CO2 capture using dry potassium-based sorbents through orthogonal test method. Int J Greenh Gas Control. 2010;4:655658. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Duan, Y, Sorescu, DC. CO2 capture properties of alkaline earth metal oxides and hydroxides: a combined density functional theory and lattice phonon dynamics study. J Chem Phys. 2010;133:074508 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. D’Alessandro, DM, Smit, B, Long, JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int. 2010;49:227. .

  • 11. Lee, JM, Min, YJ, Lee, KB, Jeon, SG, Na, JG, Ryu, HJ. Enhancement of CO2 sorption uptake on hydrotalcite by impregnation with K2CO3. Langmuir. 2010;26:1878818797. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Du, H, Ebner, AD, Ritter, JA. Pressure dependence of the non-equilibrium kinetic model that describes the adsorption and desorption behavior of CO2 in K-promoted hydrotalcite like compound. Ind. Eng. Chem Res. 2011;50:412417. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Choi, S, Drese, JH, Jones, CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796854. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Wang, Q, Luo, J, Zhong, Z. Armando Borgna, CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci. 2011;4:4255. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Hedin, N, Chen, LJ, Laaksonen, A. Sorbents for CO2 capture from flue gas-aspects from materials and theoretical chemistry. Nanoscale. 2010;2:18191841. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Nair, BN, Burwood, RP, Goh, VJ, Nakagawa, K, Yamaguchi, T. Lithium based ceramic materials and membranes for high temperature CO2 separation. Prog Mater Sci. 2009;54:511541. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Pfeiffer, H. Advances in CO2 conversion and utilization Hu, YH, eds. ACS symposium series. 1056 Washington, DC: American Chemical Society; 2010 233253.

    • Search Google Scholar
    • Export Citation
  • 18. Xiong, R, Ida, J, Lin, YS. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem Eng Sci. 2003;58:43774385. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Olivares-Marín, M, Castro-Díaz, M, Drage, TC, Maroto-Valerand, MM. Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li2ZrO3 sorbents during the sorption of CO2 at high temperatures. Sep Purif Technol. 2010;73:415420. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Pfeiffer, H, Bosch, P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chem Mater. 2005;17:17041710. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Ida, J, Xiong, R, Lin, YS. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purif Technol. 2004;36:4151. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Nakagawa, K, Ohashi, T. A reversible change between lithium zirconate and zirconia in molten carbonate. Electrochemistry. 1999;67:618621.

    • Search Google Scholar
    • Export Citation
  • 23. Fauth, DJ, Frommell, EA, Hoffman, JS, Reasbeck, RP, Pennline, HW. Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture. Fuel Process Technol. 2005;86:15031521. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Nair, BN, Yamaguchi, T, Kawamura, H. Processing of lithium zirconate for applications in carbon dioxide separation: structure and properties of the powders. J Am Ceram Soc. 2004;87:6874. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Yi, KB, Eriksen, . Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separ Sci Tech. 2006;41:283296. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Duan, Y. Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: a first-principles density-functional theory and phonon dynamics approach. J Renew Sust Energy. 2011;3:013102 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Duan, Y, Zhang, B, Sorescu, DC, Johnson, JK. CO2 capture properties of M–C–O–H (M = Li, Na, K) systems: a combined density functional theory and lattice phonon dynamics study. J Solid State Chem. 2011;184:304311. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Kang, SZ, Wu, T, Li, X, Mu, J. Low temperature biomimetic synthesis of the Li2ZrO3 nanoparticles containing Li6Zr2O7 and high temperature CO2 capture. Mater Lett. 2010;64:14041406. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Venegas, MJ, Fregoso-Israel, E, Pfeiffer, H. Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: study of the particle size effect. Ind Eng Chem Res. 2007;46:24072412. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Okumura, T, Enomoto, K, Togashi, N, Oh-ishi, K. CO2 absorption reaction of Li4SiO4 studied by the rate theory using thermogravimetry. J Ceram Soc Jpn. 2007;115:491497. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Escobedo-Bretado, M, Guzmán-Velderrain, V, Lardizabal-Gutierrez, D. A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent. Catal Today. 2005;107:863867. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Essaki, K, Kato, M, Uemoto, H. Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets. J Mater Sci. 2005;18:50175019. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Khomane, RB, Sharma, B, Saha, S, Kulkarni, BD. Reverse microemulsion mediated sol–gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO2 sequestration. Chem Eng Sci. 2006;61:34153418. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Wang, K, Guo, X, Zhao, P, Wang, F, Zheng, C. High temperature capture of CO2 on lithium-based sorbents from rice husk ash. J Hazard Mater. 2011;189:301307. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Kato, M, Nakagawa, K, Essaki, K, Maezawa, Y, Takeda, S, Kogo, R, Hagiwara, Y. Novel CO2 absorbents using lithium-containing oxide. Int J Appl Ceram Technol. 2005;2:467475. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Kato, M, Yoshikawa, S, Nakagawa, K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J Mater Sci Lett. 2002;21:485487. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Tsumura, N, Kuramoto, A, Shimamoto, Y, Aono, H, Sadaoka, Y. Thermal stability of sodium aluminum silicates with alkali carbonates. J Ceram Soc Jpn. 2005;113:269274. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Gauer, C, Heschel, W. Doped lithium orthosilicate for absorption of carbon dioxide. J Mater Sci. 2006;41:24052409. .

  • 39. Korake, PV, Gaikwad, AG. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Front Chem Eng China. 2011;5:215226.

    • Search Google Scholar
    • Export Citation
  • 40. Yamaguchi, T, Niitsuma, T, Nair, BN, Nakagawa, K. Lithium silicate based membranes for high temperature CO2 separation. J Membr Sci. 2007;294:1621. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Mejía-Trejo, VL, Fregoso-Israel, E, Pfeiffer, H. Textural, structural and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4). Chem Mater. 2008;20:71717176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Ueda, S, Inoue, R, Sasaki, K, Wakuta, K, Ariyama, T. CO2 absorption and desorption abilities of Li2O–TiO2 compounds. ISIJ Int. 2011;51:530537. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Palacios-Romero, LM, Pfeiffer, H. Lithium cuprate (Li2CuO2): a new possible ceramic material for CO2 chemisorption. Chem Lett. 2008;37:862863. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Palacios-Romero, LM, Lima, E, Pfeiffer, H. Structural analysis and CO2 chemisorption study on non-stoichiometric lithium cuprates (Li2+xCuO2+x/2). J Phys Chem A. 2009;113:193198. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Kato, M, Essaki, K, Nakagawa, K, Suyama, Y, Terasaka, K. CO2 absorption properties of lithium ferrite for application as a high-temperature CO2 absorbent. J Ceram Soc Jpn. 2005;113:684686. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Togashi, N, Okumura, T, Oh-ishi, K. Synthesis and CO2 absorption property of Li4TiO4 as a novel CO2 absorbent. J Ceram Soc Jpn. 2007;115:324328. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Ávalos-Rendón, TL, Pfeiffer, H. Evidence of CO2 chemisorption at high temperature in lithium gallate (Li5GaO4). Chem Lett. 2011;40:504505. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Martinez-dlCruz, L, Pfeiffer, H. Effect of the oxygen addition on the thermokinetic properties of CO2 chemisorption on Li2ZrO3. Ind Eng Chem Res. 2010;49:90389042. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Martinez-dlCruz, L, Pfeiffer, H. Towards understanding the effect of water sorption on lithium zirconate (Li2ZrO3) during its carbonation process at low temperatures. J Phys Chem C. 2010;114:94539458. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Mosqueda-Rodríguez, R, Pfeiffer, H. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. J Phys Chem A. 2010;114:45354541. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Ávalos-Rendón, TL, Pfeiffer, H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. J Phys Chem A. 2009;113:69196923. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Nakagawa, K, Ohashi, T. A novel method of CO2 capture from high temperature gases. J Electrochem Soc. 1998;145:13441346. .

  • 53. López-Ortiz, A, Perez-Rivera, NG, Reyes-Rojas, A, Lardizábal-Gutiérrez, D. Novel carbon dioxide solid acceptors using sodium containing oxides. Sep Sci Technol. 2004;39:35593572. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Ida, J, Lin, JYS. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environ Sci. Technol. 2003;37:19992004. .

  • 55. Mosqueda, HA, Vazquez, C, Bosch, P, Pfeiffer, H. Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O). Chem Mater. 2006;18:23072310. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56. Nakagaki, T. Enhanced hydrogen production process from coal integrated with CO2 separation using dual chemical looping. Energy Procedia. 2011;4:324332. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57. Yin, XS, Zhang, QH, Yu, JG. Three-step calcination synthesis of high-purity Li8ZrO6 with CO2 absorption properties. Inorg Chem. 2011;50:28442850. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58. Yin, XS, Song, M, Zhang, QH, Yu, JG. High-temperature CO2 capture on Li6Zr2O7: experimental and modeling studies. Ind Eng Chem Res. 2010;49:65936598. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59. Olivares-Marín, M, Drage, TC, Maroto-Valer, MM. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures. Int J Greenh Gas Control. 2010;4:623629. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60. Seggiani, M, Puccini, M, Vitolo, S. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects. Int J Greenh Gas Control. 2011;5:741748. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61. Yin, XS, Li, SP, Zhang, QH, Yu, JG. Synthesis and CO2 adsorption characteristics of lithium zirconates with high lithia content. J Am Ceram Soc. 2010;93:28372842. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62. Xiao, Q, Liu, Y, Zhong, Y, Zhu, W. A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. J Mater Chem. 2011;21:38383842. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63. Ochoa-Fernández, E, R⊘nning, M, Grande, T, Chen, D. Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture. Chem Mater. 2006;18:13831385. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64. Ochoa-Fernández, E, R⊘nning, M, Grande, T, Chen, D. Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chem Mater. 2006;18:60376046. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65. Ochoa-Fernández, E, R⊘nning, M, Yu, X, Grande, T, Chen, D. Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties. Ind Eng Chem Res. 2008;47:434442. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66. Pannocchia, G, Puccini, M, Seggiani, M, Vitolo, S. Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res. 2007;46:66966706. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67. Veliz-Enriquez, MY, Gonzalez, G, Pfeiffer, H. Synthesis and CO2 capture evaluation of Li2−xKxZrO3 solid solutions and crystal structure of a new lithium-potassium zirconate phase. J Solid State Chem. 2007;180:24852492. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68. Hrycak MB , McKenna DB, U.S. Patent, 2004, No. 60/539343.

  • 69. Matsukura, Y, Okumura, T, Kobayashi, R, Oh-ishi, K. Synthesis and CO2 absorption properties of single-phase Li2CuO2 as a CO2 absorbent. Chem Lett. 2010;39:966967. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70. Pfeiffer, H, Vazquez, C, Lara, VH, Bosch, P. Thermal behavior and CO2 absorption of Li2−xNaxZrO3 solid solutions. Chem Mater. 2007;19:922926. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71. Pasierb, P, Gajerski, R, Komornicki, S, Rekas, M. Structural properties and thermal behavior of Li2CO3-BaCO3 system by DTA, TG and XRD measurements. J Therm Anal Calorim. 2001;65:457466. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72. McMurdie HF , Morris MC, Evans EH, Paretzkin B, de-Groot JH, Hubbard CR, Carmel SJ. Natl Bur Stand (U.S.). Monogr. 1970;25:42.

  • 73. Inoue, R, Ueda, S, Wakuta, K, Sasaki, S, Ariyama, T. Thermodynamic consideration on the absorption properties of carbon dioxide to basic oxide. ISIJ Int. 2010;50:15321538. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74. Kato, M, Nakagawa, K. New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO2 absorbent. J Ceram Soc Jpn. 2001;109:911914. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75. Mizusaki, J, Tagawa, H. Lithium carbonate as a solid electrolyte. Solid State Ion. 1992;53–56:791800. .

  • 76. Mishra, KM, La, AK, Haque, FZ. Ionic and electronic conductivity in some alkali vanadates. Solid State Ion. 2004;167:137146. .

  • 77. Claus, S, Kleykamp, H, Smykatz-Kloss, W. Phase equilibria in the Li4SiO4-Li2SiO3 region on the pseudobinary Li2O-SiO2 system. J Nucl Mater. 1996;230:811. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78. Thangadurai, V, Weppner, W. Solid state lithium ion conductors: design considerations by thermodynamics approach. Ionics. 2002;8:281292. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)