View More View Less
  • 1 Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
Restricted access

Abstract

In order to investigate the contribution of the hydrophilic parts of guest molecules of aliphatic complexes to the inclusion reaction, the thermodynamic properties of inclusion complexes of cyclodextrin (α-CD) with aliphatic nitriles [H(CH2) nCN: n = 1–8] into the α-CD cavity in dilute aqueous solutions were measured by a micro-calorimeter at 298.15 K. The thermodynamic properties of inclusion for the octane nitrile system were different from those of others. The inclusion process of aliphatic nitriles to α-CD has two kinds of major driving force of enthalpy and entropy driven inclusion. The interaction energies of inclusion complexes of α-CD and aliphatic nitriles were determined by DFT calculation (B3LYP/6-31++G (d,p)) in water and compared with the experimental results. DFT calculations were performed on the inclusion complexes of α-CD with seven nitriles of each conformer. Both the gas phase interaction and solvent effect were taken into consideration. Also non-polar interactions between aliphatic nitriles + α-CD in aqueous solution were calculated and herein the inclusion energy is discussed.

  • 1. Takagi, S, Kimura, T, Maeda, M. Some problems in solution calorimetry, experimental experiences by authors, and enthalpy-entropy compensation in cyclodextrin+alcohol inclusion-complex formation in aqueous solutions. Thermochim Acta. 1985;88:247254. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Takagi, S, Fujisawa, M, Kimura, T. Enthalpy and entropy changes on molecular inclusion of 1,3-butanediol into α- and β-cyclodextrin cavities in aqueous solutions. Thermochim Acta. 1991;183:289297. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Maeda, M, Takagi, S. Calorimetric studies on molecular inclusion. III. Gibbs energies and entropies of inclusion of 1-propanol and 1-pentanol into cyclohexaamylose and cycloheptaamylose in aqueous solutions at 298.15K. Netsu Sokutei. 1983;10:103107.

    • Search Google Scholar
    • Export Citation
  • 4. Takagi, S , Maeda M. Enthalpy of inclusion of methanol, 1-propanol, 1-pentanol into α-cyclodextrin cavities in aqueous solutions at 298.15K. Nippon Kagakukai Shi. 1983: 1983; 188194.

    • Search Google Scholar
    • Export Citation
  • 5. Takagi, S, Maeda, M. Calorimetric determination of enthalpies, Gibbs energies and entropies of inclusion of some alcohols into α-and β-cyclodextrins in aqueous solutions. J Incl Phenom. 1984;2:775780. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Fujisawa, M, Kimura, T, Takagi, S. Enthalpy and entropy changes on molecular inclusion of 1-butanol into α- and β-cyclodextrin cavities in aqueous solutions. Netsusokutei. 1991;18:7176.

    • Search Google Scholar
    • Export Citation
  • 7. Takagi, S, Fujisawa, M, Kimura, T. Moleclular recognition Salamone, JC, eds. Polymeric materials encyclopedia cyclodextrins. Boca Raton: CRC press Inc.; 1996 17091715.

    • Search Google Scholar
    • Export Citation
  • 8. Fujisawa, M, Kimura, T, Takagi, S. The enthalpic stabilisation on molecular inclusion of butanediol isomers into cyclodextrin cavities. Fluid Phase Equilib. 1997;163:197205. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Fujisawa, M, Kimura, T, Takagi, S. Thermodynamic functions of molecular inclusion of some isomers of butanediol in gas phase into α- and β-cyclodextrin cavities in aqueous solutions at 298.15K. J Thermal Anal Calorim. 2001;64:149155. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Fujisawa, M, Kimura, T. Enthalpy and entropy changes on molecular inclusion of 1-heptanol into α- and β-cyclodextrin cavities in aqueous solutions. Thermochim Acta. 2004;416:5154. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kimura, T, Fujisawa, M, Nakano, Y, Kamiyama, T, Otsu, T, Maeda, M, Takagi, S. Calorimetric study on inclusion of some alcohols into α-cyclodextrin cavities; molecular mechanical calculation of hydration Gibbs energies. J Thermal Anal Calorim. 2007;90:581585. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kimura, T, Fujie, S, Yukiyama, T, Kamiyama, T, Fujisawa, M, Aki, H. 2011 Enthalpy and entropy changes on molecular inclusion of pentane derivertives into α-cyclodextrin cavities in aqueous solutions. J. Incl. Phenom. Mcrocycl. Chem. 70:269278. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Bastos, M, Briggner, L-E, Shehatta, I, Wadsö, I. The binding of alkane-α, ω-diols to α-cyclodextrin. A microcalorimetric study. J Chem Thermodyn. 1990;22:11811190. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Bastos, M, Afonso, M, Cacote, MHM, Ramos, MJ. Interactions in the model system α-cyclodextrin–glycerol Experimental and theoretical study. J Chem Soc Faraday Trans. 1997;93:20612067. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Bastos, M, Milheiras, S, Bai, G. Enthalpy of solution of α-cyclodextrin in water and in formamide at 298.15K. Thermochim Acta. 2004;420:111117. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Moreira, R, Bastos, M. The influence of glycerol on ligand binding equilibria between monoalcohols and α-cyclodextrin. J Chem Thermodyn. 2000;32:15391550. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Rekharsky, M, Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:18751918. .

  • 18. Ross, PD, Rekharsky, MV. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys J. 1996;71:21442154. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Rekharsky, MV, Schwarz, FP, Tewari, YB, Goldberg, RN. A thermodynamic study of the reactions of cyclodextrins with primary and secondary aliphatic alcohols, with d- and l-phenylalanine, and with l-phenylalanine amide. J Phys Chem. 1994;98:1028210288. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Connors, KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97:13251358. .

  • 21. Rekharsky, MV, Inoue, Y. Microcalorimetry Dodziuk, H, eds. Cyclodextrins and their complexes: chemistry, analytical methods, applications. Weinheim: Wiley-VCH Verlag GmbH & Co.; 2006 199230. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Spencer, JN, DeGarmo, IJ, Paul, IM, He, Q, Ke, X, Wu, Z, Yoder, CH, Chen, S, Mihalick, JE. Inclusion complexes of alcohols with α-cyciodextrin. J Solut Chem. 1995;24:601609. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Barone, G, Castronuovo, G, Del Vecchio, P, Elia, V, Muscetta, M. Thermodynamics of formation of inclusion compounds in water. α-Cyclodextrin–alcohol adducts at 298.15K. J Chem Soc Faraday Trans. 1986;82:20892101. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Kimura, T, Imamura, H, Shimowada, A, Takagi, S. Elimination processes of guest molecules from the inclusion complexes of deoxycholic acid. J Mass Spectrom Soc Jpn. 2003;51:242246. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Kimura, T, Takagi, S. Determination of excess volumes of benzene+o-terphenyl at 288.15, 298.02, and 302.78K. J Chem Thermodyn. 1979;11:119124. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Kimura, T, Matsushita, T, Ueda, K, Tamura, K, Takagi, S. Deuterium isotope effect on excess enthalpies of methanol or ethanol and their deuterium derivatives. J Thermal Anal Calorim. 2001;64:231241. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Kimura, T, Ozaki, T, Nakai, Y, Takeda, K, Takagi, S. Excess enthalpies of binary mixtures of propanediamine+propanediol at 298.15K. J Thermal Anal. 1998;54:285296. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Wadsö, I, Goldberg, RN. Pure Appl Chem. 2001;73:16251639. .

  • 29. Chacko, KK, Saenger, W. Topography of cyclodextrin inclusion complexes. 15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. Four- and six-membered circular hydrogen bonds. J Am Chem Soc. 1981;103:17081715. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Cossin, M, Rega, N, Scalmani, G, Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem. 2003;24:669681. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Chalasinski, G, Szczeniak, MM. On the connection between the supermolecular M⊘ller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces. Mol Phys. 1988;63:205224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Gaussian 09, revision A.02. Gaussian, Inc., Pittsburgh; 2009.

  • 33. Fujisawa, M, Maeda, M, Takagi, S, Kimura, T. Enthalpies of dilution of mono-, di- and polyalcohols in dilute aqueous solutions at 298.15K. J Therm Anal Calorim. 2002;69:841848. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem. 2006;27:17871799. .

  • 35. Hamprecht, FA, Cohen, A, Tozer, DJ, Handy, NC. Development and assessment of new exchange-correlation functionals. J Chem Phys. 1998;109:62646271. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Morikawa, T, Brian, T. Newbold, analogous odd-even parities. Math Chem. 2003;12:445450.

  • 37. Nooner, DW, Oró, J. Organic complexes in meteorites—I. Aliphatic hydrocarbons. Geochim Cosmochim Acta. 1967;31:13591394. .

  • 38. Cingolani, A, Berchiesi, G. Thermodynamic properties of organic complexs. J Thermal Anal Calorim. 1974;6:8791. .

  • 39. Acree, WE. Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation. Thermochim Acta. 1991;189:3756. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 2 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0