View More View Less
  • 1 CEMUC, Engineering Physics Department, Engineering Faculty, Porto University, R. Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
  • | 2 Los Alamos National Laboratory (LANSCE), Los Alamos, NM, 87545, USA
  • | 3 Laboratorio Nacional de Energia e Geologia, Rua da Amieira, Apartado 1089, 466-901, S. Mamede de Infesta, Portugal
Restricted access

Abstract

Finite fossil-fuel supplies, nuclear waste and global warming linked to CO2 emissions have made the development of alternative/‘green’ methods of energy production, conversion and storage popular topics in today’s energy-conscious society. These crucial environmental issues, together with the rapid advance and eagerness from the electric automotive industry have combined to make the development of radically improved energy storage systems a worldwide imperative. CuMg2 has an orthorhombic crystal structure and does not form a hydride: it reacts reversibly with hydrogen to produce Cu2Mg and MgH2. However, CuLixMg2−x (x = 0.08) has a hexagonal crystal structure, just like NiMg2, a compound known for its hydrogen storage properties. NiMg2 absorbs up to 3.6 wt% of H. Our studies showed that not only CuLixMg2−x absorbs a considerable amount of hydrogen, but also starts releasing it at a temperature in the range of 40–130 °C. In order to determine the properties of the hydrogenated CuLixMg2−x, absorption–desorption, Differential scanning calorimeter and thermo-gravimetric experiments were performed. Neutron spectra were collected to elucidate the behavior of hydrogen in the Li-doped CuMg2 intermetallic. Using DFT calculations we were able to determine the best value for x in CuLixMg2−x and compare different possible structures for the CuLixMg2−x hydride.

  • 1. Yang, K, An, JJ, Chen, S. 2010 Influence of additives on the thermal behavior of nickel/metal hydride battery. J Therm Anal Calorim. 102:953959. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Fang, KZ, Mu, DB, Chen, S, Wu, F, Zeng, XJ. 2011 Thermal behavior of nickel–metal hydride battery during charging at a wide range of ambient temperatures. Therm Anal Calorim. 105:383388. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Reilly, JJ, Wiswall, RW. 1969 The reaction of hydrogen with alloys of magnesium and copper. Inorg Chem. 6: 12 22202223. .

  • 4. Braga, MH, Ferreira, J, Malheiros, LF. 2007 A ternary phase in Cu–Li–Mg system. J Alloy Comp. 436:278284. .

  • 5. Hewat P . (2007) Inorganic Crystal Structure Database. 156880.

  • 6. Schlapbach, L, Zuttel, A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353358. .

  • 7. Braga, MH, Ferreira, J, Malheiros, LF, Hamalainen, M. 2007 HT-XRD on the study of Cu–Li–Mg Z. Kristallog suppl. 26:299304. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Orimo, S, Nakamori, Y, Eliseo, JR, Zuttel, A, Jensen, CM. 2007 Complex hydrides for hydrogen storage. Chem Rev. 107:41114132. .

  • 9. Reilly, J, Wiswall, R. The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem. 1968;7: 11 22542256. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Braga MH , Malheiros LF. WO2007046017.dp.

  • 11. Match software, http://www.crystalimpact.com/match/Default.htm, Accessed 31 Aug 2011.

  • 12. de Wolff, PM, Visser, JW. 1988 Absolute Intensities. Report 641.109. Technisch Physische Dienst, Delft, Netherlands. Reprinted Powder Diffract. 3:202.

    • Search Google Scholar
    • Export Citation
  • 13. Braga, MH, Acatrinei, A, Hartl, M, Vogel, S, Proffen, Th, Daemen, L. 2010 New promising hydride based on the Cu–Li–Mg system. J Phys Conf Ser. 251:012040 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Sandrock GD , Thomas G. IEA DOE SNL On-line Hydride Database. http://hydepark.ca.sandia.gov. Accessed 2009.

  • 15. Andreasen A . Hydrogen storage materials with focus on main group I-II elements. PhD thesis. ISBN 87-550-3498-5; 2005.

  • 16. Mueller, WM, Blackledge, JP, Libowitz, GG, eds. Metal hydrides. London: Academic Press Inc; 1968.

  • 17. Yvon K , Renaudin G. Hydrides: solid state transition metal complexes. Encyclopaedia of Inorganic Chemistry,. 2006.

  • 18. Parker, SF, Jayasooriya, UA, Sprunt, JC, Bortz, M, Yvon, K. Inelastic neutron scattering, IR and Raman spectroscopic studies of Mg2CoH5 and Mg2CoD5. J Chem Soc Farad Trans. 1998;94: 17 25952599. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Schimmel, HG, Johnson, MR, Kearley, GJ, Ramirez-Cuesta, AJ, Huot, J, Mulder, FM. The vibrational spectrum of magnesium hydride from inelastic neutron scattering and density functional theory. Mater Sci Eng B. 2004;108:3841. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Patah A , Takasaki A, Szmyd JS. The Effect of Cr2O3/ZnO on hydrogen desorption properties of MgH2. Mater Res Soc Symp Proc. 2009: 1148-PP03-38.

    • Search Google Scholar
    • Export Citation
  • 21. Balasooriya NWB . Poinsignon Ch. Preparation and characteristics of ball milled MgH2+M (M=Fe, FeF3 and VF3) nanocomposites for hydrogen storage. Solid state ionics advanced materials for emerging technologies. Singapore: World scientific publishing Co. Pte. Ltd 2006. p 2207.

    • Search Google Scholar
    • Export Citation
  • 22. Wu, CZ, Wang, P, Yao, X, Liu, C, Chen, DM, Lu, GQ, Cheng, HM. Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J Alloys Comp. 2006;420: 1–2 278282. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Montone, A, Grbovic, J, Stamenkovic, Lj, Fiorini, AL, Pasquini, L, Bonetti, E, Antisari, MV. Desorption Behaviour in Nanostructured MgH2-Co. Mat Sci Forum. 2008;518:7984. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Lillo-Rodenas, MA, Aguey-Zinsou, KF, Cazorla-Amoros, D, Linares-Solano, A, Guo, ZX. 2008 Effects of carbon-supported nickel catalysts on MgH2 decomposition. J Phys Chem C. 112:59845992. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Tessier, P, Akiba, E. 2000 Decomposition of nickel-doped magnesium hydride prepared by reactive mechanical alloying. J Alloys Comp. 302:215217. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Milovanovic, S, Matovic, L, Drvendzija, M, Novakovic, JG. Hydrogen storage properties of MgH2-diatomite composites obtained by high-energy ball milling. J Micros. 2008;232: 3 522525. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Deledda, S, Borissova, A, Poinsignon, C, Botta, WJ, Dornheim, M, Klassen, T. 2005 H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. J Alloys Comp. 404–406:409412. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Shao, H, Wang, Y, Xu, H, Li, X. 2005 Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J Solid State Chem. 178:22112217. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Blochl, PE. Projector augmented-wave method. Phys Rev B. 1994;50:1795317979. .

  • 30. Kresse, G, Furthmüller, J. 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys Rev B. 54:1116911186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Kresse, G, Furthmüller, J. 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Comp Mat Sci. 6:1 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Kresse, G, Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:17581775. .

  • 33. Perdew, JP, Burke, K, Ernzerhof, M. 1996 Generalized Gradient Approximation Made Simple. Phys Rev Lett. 77: 18 38653868. .

  • 34. Braga, MH, Ferreira, JJA, Siewenie, J, Proffen, Th, Vogel, SC, Daemen, LL. 2010 Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x≅0.08), CuMg2, and Cu2Mg. J Sol. Stat Chem. 183:1019. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 1 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0