View More View Less
  • 1 Departamento de Edafología, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28004, Madrid, Spain
  • 2 Departamento de Ingeniería de Materiales, E.T.S.I. Minas. Universidad Politécnica de Madrid, C/Ríos Rosas No. 21, 28003, Madrid, Spain
Restricted access

Abstract

The main objective of the present study is to study the behaviour of sewage sludge and biochar from sewage sludge pyrolysis after addition to soil in a context of a temperate agricultural soil. For this, an incubation experiment was designed during 200 days. Carbon mineralization of soil amended with sewage sludge and biochar at two different rates (4 and 8 wt%) was evaluated. Differential thermal analysis, thermogravimetry and the first derivate of the TG were performed in oxidizing conditions on soil samples before and after incubation. Biochar obtained from sewage sludge pyrolysis at 500 °C was more stable in soil than original sewage sludge. After incubation experiment, the reduction of soil organic matter content was significantly lower in soil amended with biochar than in soil amended with sewage sludge. The thermostability index WL3/WL2 decreases after incubation in soil amended with biochar, however it increases in case of soil treated with sewage sludge.

  • 1. Méndez, A, Barriga, S, Fidalgo, JM, Gascó, G. 2009 Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water. J Hazard Mater. 165:736743. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Méndez, A, Fernández, F, Gascó, G. 2007 Removal of malachite green using carbon-based adsorbents. Desalination. 206:147153. .

  • 3. Martin, MJ, Artola, A, Balaguer, MD, Rigola, M. 2003 Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem Eng J. 94:231239. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Liang, B, Lehmann, J, Solomon, D, Kinyangi, J, Grossman, J, O’Neill, B, Skjemstad, JO, Thies, J, Luizao, FJ, Petersen, J, Neves, EG. 2006 Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J. 70:17191730. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Beck, DA, Johnson, GR, Spolek, GA. 2011 Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ Pollut. 159:21112118. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Jha, P, Biswas, AK, Lakaria, BL, Subba Rao, A. 2010 Biochar in agriculture—prospects and related implications. Curr Sci. 99:12181225.

    • Search Google Scholar
    • Export Citation
  • 7. Laird, D, Fleming, P, Wang, B, Horton, R, Karlen, D. 2010 Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma. 158:436442. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Lehmann, J. 2007 Bio-energy in the black. Front Ecol Environ. 5:381387. .

  • 9. Plante, AF, Fernández, JM, Leifeld, J. 2009 Application of thermal analysis techniques in soil science. Geoderma. 153:110. .

  • 10. Barriga, S, Méndez, A, Cámara, J, Guerrero, F, Gascó, G. 2010 Agricultural valorisation of de-inking paper sludge as organic amendment in different soils: thermal study. J Therm Anal Calorim. 99:981986. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Thomas, GW. Soil pH and soil acidity Bigham, JM, eds. Methods of soil analysis. Part 3. Chemical methods. Madison: ASA-SSSA; 1996 475489.

    • Search Google Scholar
    • Export Citation
  • 12. Rhoades, JD. Methods of soil analysis: Part 3 Bigham, JM, eds. Methods of soil analysis. Part 3. Chemical methods. Madison: SSSA; 1996 417435.

    • Search Google Scholar
    • Export Citation
  • 13. Sumner, ME, Miller, WP. Cation exchange capacity and exchange coefficients Bigham, JM, eds. Methods of soil analysis. Part 3. Chemical methods. Madison: SSSA; 1996 12011229.

    • Search Google Scholar
    • Export Citation
  • 14. Nelson, DW, Sommers, LE. Total carbon, organic carbon and organic matter Bigham, JM, eds. Methods of soil analysis. Part 3. Chemical methods. Madison: SSSA; 1996 9611010.

    • Search Google Scholar
    • Export Citation
  • 15. USEPA Method 3051a: Microwave assisted acid dissolution of sediments, sludges, soils, and oils. 2 Washington: U.S. Gov. Print. Office; 1997.

    • Search Google Scholar
    • Export Citation
  • 16. Bouyoucos, GJ. 1962 Hydrometer method improved for making particle size analyses of soil. Agron J. 54:464465. .

  • 17. Hernández-Apaolaza, L, Gascó, JM, Guerrero, F. 2000 Initial organic matter transformation of soil amended with composted sewage sludge. Biol Fert Soils. 32:421426. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Díez, JA, Polo, A, Guerrero, F. 1992 Effect of sewage sludge on nitrogen availability in peat. Biol Fert Soils. 13:248251. .

  • 19. Zbytniewski, R, Buszewski, B. 2005 Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour Technol. 96:471478. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Gieguzyńska, E, Koćmit, A, Gołębiewska, D. Studies on humic acids in eroded soils of Western Pomerania Zaujec, A, Bielek, P, Gonet, SS, eds. Humic substances in ecosystems. Nitra: Slovak Agricultural University; 1998 3541.

    • Search Google Scholar
    • Export Citation
  • 21. Dell’Abate, MT, Benedetti, A, Sequi, P. 2000 Thermal methods of organic matter maturation monitoring during a composting process. J Therm Anal Calorim. 61:389396. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Smidt, E, Lechner, P. 2005 Study on the degradation and stabilization of organic matter in waste by means of thermal analyses. Thermochim Acta. 438:2228. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Baffi, C, Dell’Abate, MT, Nassisi, A, Silva, S, Benedetti, A, Genevini, PL, Adani, F. 2007 Determination of biological stability in compost: a comparison of methodologies. Soil Biol Biochem. 39:12841293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Som, MP, Lemeé, L, Amblés, A. 2009 Stability and maturity of green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresour Technol. 100:44044416. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. FAO World reference base for soil resources. Rome: Food and Agriculture Organization of the United Nations; 1998.

  • 26. Smith, JL, Collins, HP, Bailey, VL. 2010 The effect of young biochar on soil respiration. Soil Biol Biochem. 42:23452347. .

  • 27. Jin H , Lehmann J, Thies JE. Soil microbial community response to amending maize soils with maize stover charcoal. In: Proceedings of the 2008 conference of international biochar initiative, 8–10 September 2008, Newcastle.

    • Search Google Scholar
    • Export Citation
  • 28. Liang B . The biogeochemistry of black carbon in soils. PhD thesis, Cornell University, Ithaca, 2008.

  • 29. Thies, JE, Rillig, MC. Characteristics of biochar: biological properties Lehmann, J, Joseph, S, eds. Biochar for environmental management: science and technology. London: Earthscan; 2009.

    • Search Google Scholar
    • Export Citation