View More View Less
  • 1 Department of Industrial and Mechanical Engineering, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
  • | 2 Department of Pharmaceutical Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
Restricted access

Abstract

Six polyhedral oligomeric silsesquioxanes (POSSs) with general formula R7 R′1 (SiO1.5)8, where R- was an isobutyl group and R′- a variously substituted phenyl group, namely hepta isobutyl polyhedral oligomeric silsesquioxane (hib-POSS), were prepared and their composition was checked by elemental analysis and 1H NMR spectroscopy. The degradation of compounds obtained was studied by simultaneous differential thermal analysis/thermogravimetry (DTA/TG) technique, in both inert (flowing nitrogen) and oxidative (static air atmosphere) environments, in order to draw useful information about their thermal stability. Experiments, performed in the 35–700 °C temperature range, showed different behaviour between the two used atmospheres. The formation of volatile compounds only, with an about complete mass loss, was observed under nitrogen, while a solid residue (≈40–50% in every case), due to the formation of SiO2, as indicated by the FTIR spectra, was obtained in static air atmosphere. The results obtained were discussed and compared, and the classifications of resistance to thermal degradation in the studied environments were made. A comparison between the thermal stabilities of hib-POSSs and analogous cyclopentyl POSSs previously studied was also performed.

  • 1. Gupta, RK, Kennel, E, Kim, KJ, eds. Polymer nanocomposites handbook. Boca Raton, FL: CRC Press Inc.; 2010.

  • 2. Abate, L, Blanco, I, Bottino, FA, Di Pasquale, G, Fabbri, E, Orestano, A, Pollicino, A. Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91: 3 681686. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Olewnik, E, Garman, K, Czerwiński, W. Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. J Therm Anal Calorim. 2010;101: 1 323329. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Lomakin, SM, Dubnikova, IL, Shchegolikhin, AN, Zaikov, GE, Kozlowski, R, Kim, GM, Michler, GH. Thermal degradation and combustion behavior of the polyethylene/clay nanocomposite prepared by melt intercalation. J Therm Anal Calorim. 2008;94: 3 719726. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Zaitsev, VS, Filimonov, DS, Presnyakov, IA, Gambino, RJ, Chu, B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci. 1999;212:4957. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Haraguchi, K, Farnworth, R, Ohbayashi, A, Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:57325741. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Hu, Y, Chen, JF, Zhang, HT, Li, TW, Xue, X. Using silicon dioxide nanosphere gaps to confine growth of single-crystal nickel sulfide nanowires in polyacrylamide gel. Scripta Mater. 2006;55:131134. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Yu, SL, Zuo, XT, Bao, RL, Xu, X, Wang, J, Xu, J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553559. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Chrissafis, K, Paraskevopoulos, KM, Tsiaoussis, I, Bikiaris, D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;112:16061618. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Avella, M, Cosco, S, Di Lorenzo, ML, Di Pace, E, Errico, ME. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2005;80: 1 131136. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Jiao, C, Chen, X. Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites. J Therm Anal Calorim. 2009;98: 3 813818. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ramezanzadeh, B, Attar, MM, Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103: 2 731739. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Viratyaporn, W, Lehman, RL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103: 1 267273. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Hu, S, Hu, Y, Song, L, Lu, H. Effect of modified organic-inorganic hybrid materials on thermal properties of cotton fabrics. J Therm Anal Calorim. 2011;103: 2 423427. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Fina, A, Tabuani, D, Frache, A, Camino, G. Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer. 2005;46:78557866. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Weickmann, H, Delto, R, Thomann, R, Brenn, R, Döll, W, Mülhaupt, R. PMMA nanocomposites and gradient materials prepared by means of polysilsesquioxane (POSS) self-assembly. J Mater Sci. 2007;42: 1 8792. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. dellErba, IE, Williams, RJJ. Epoxy networks modified by multifunctional polyhedral oligomeric silsesquioxanes (POSS) containing amine groups. J Therm Anal Calorim. 2008;93: 1 95100. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Villanueva, M, Martín-Iglesias, JL, Rodríguez-Añón, JA, Proupín-Castiñeiras, J. Thermal study of an epoxy system DGEBA (n=0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96: 2 575582. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Wang, XT, Yang, YK, Yang, ZF, Zhou, XP, Liao, YG, Lv, CC, Chang, FC, Xie, XL. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim. 2010;102: 2 739744. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Fina, A, Monticelli, O, Camino, G. POSS-based hybrids by melt/reactive blending. J Mater Chem. 2010;20:92979305. .

  • 21. Wang X , Wu L, Li J. Preparation of nano poly(phenylsilsesquioxane) spheres and the influence of nano-PPSQ on the thermal stability of poly(methyl methacrylate). J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Harrison, PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;542: 2 141183. .

  • 23. Baney, RH, Itoh, M, Sakakibara, A, Suzuki, T. Silsesquioxanes. Chem Rev. 1995;95: 5 14091430. .

  • 24. Bolln, C, Tsuchida, A, Frey, H, Mulhaupt, R. Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9: 6 14751479. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Mantz, RA, Jones, PF, Chaffee, KP, Lichtenhan, JD, Gilman, JW. Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS–siloxane copolymers. Chem Mater. 1996;8: 6 12501259. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Fina, A, Tabuani, D, Frache, A, Boccaleri, E, Camino, G. Le Bras, M, Wilkie, C, Bourbigot, S, eds. Fire retardancy of polymers: new applications of mineral fillers. Cambridge: Royal Society of Chemistry; 2005 202220.

    • Search Google Scholar
    • Export Citation
  • 27. Fina, A, Tabuani, D, Carniato, F, Frache, A, Boccaleri, E, Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440: 1 3642. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Blanco I , Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. De Armitt, C, Wheeler, P. POSS keeps high temperature plastics flowing. Plastics Addit Compound. 2008;10: 4 3639. .

  • 30. Lee, JY, Fu, GC. Room-temperature Hiyama cross-couplings of arylsilanes with alkyl bromides and iodides. J Am Chem Soc. 2003;125: 19 56165617. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Murata, M, Ishikura, M, Nagata, M, Watanabe, S, Masuda, Y. Rhodium (I)-catalyzed silylation of aryl halides with triethoxysilane: practical synthetic route to aryltriethoxysilanes. Org Lett. 2002;4: 11 18431845. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Weber, WP. Silicon reagents for organic synthesis. Berlin, New York: Springer-Verlag; 1983 .

  • 33. Manoso, AS, Ahn, C, Soheili, A, Handy, CJ, Correia, R, Seganish, WM, Deshong, P. Improved synthesis of aryltrialkoxysilanes via treatment of aryl grignard or lithium reagents with tetraalkyl orthosilicates. J Org Chem. 2004;69: 24 83058314. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Lichtenhan JD , Schwab JJ, Reinerth W, Carr MJ, An YZ, Feher FJ. Process for the formation of polyhedral oligomeric silsesquioxanes. US Patent WO 01/10871 A1.

    • Search Google Scholar
    • Export Citation
  • 35. Shimadzu DTG-60/60H Instruction manual. Shimadzu Corporation, Analytical & Measuring Instruments Division. Kyoto, Japan 2000.

  • 36. User’s manual TA 3000 System. Greifensee: Mettler Instr., AG, 1984.

  • 37. Della Gatta, G, Richardson, MJ, Sarge, SM, St⊘len, S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC Technical Report). Pure Appl Chem. 2006;78: 7 14551476. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 4 0 0
Aug 2021 9 0 0
Sep 2021 2 0 0
Oct 2021 7 0 0
Nov 2021 2 0 0
Dec 2021 0 0 0