TiO2/SnO2 nanocomposites are studied as potential candidates for gas sensors. Commercial metal oxide nanopowders milled for 1 h in ethanol are used for preparing nanocomposites with varied composition from 100 mol% TiO2 to 100 mol% SnO2. Brunauer–Emmett–Teller (BET) adsorption isotherms served to determine specific surface area, SSA. The particle size distribution is established by means of Dynamic Light Scattering, DLS technique. Differential Thermal Analysis and Thermogravimetry, DTA/TG measurements within the temperature range of 20–900 °C indicate better stability of nanomaterials composed of bigger particles or agglomerates. The total mass loss varies from 0.9 to 8.5% for 100 mol% SnO2 and 100 mol% TiO2, respectively. The only gaseous products of decomposition are water and carbon dioxide. X-ray diffraction analysis of nanocomposites indicates two separate phases of different crystallite size, i.e., smaller rutile TiO2 (9 nm) and larger cassiterite SnO2 (28 nm). Gas sensor dynamic responses at 400 °C to the reducing gas—ammonia (NH3) are detected in the concentration range extending from 100 ppm to −5000 ppm. Nanosensor of 50 mol% SnO2/50 mol% TiO2 is stable and sensitive to the interaction with NH3 and gives the highest response at 400 °C.
1. Yamazoe, N 1991 New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19 .
2. Di Francia G , Alfano B, La Ferrara V. Conductometric gas sensors. Hindawi Publishing Corporation, Journal of Sensors, 2009. doi: .
3. Timmer, B, Olthuis, W A van den Berg 2005 Ammonia sensors and their applications—a review. Sens Actuators B 107:666–677 .
4. Ivanov, P, Hubalek, J, Malysz, K, Prášek, J, Vilanowa, X, Llobet, E, Correig, X 2004 A route toward more selective and less humidity sensitive screen-printed SnO2 and WO3 gas sensitive layers. Sens Actuators B 100:221–227 .
5. Shimizu, Y, Okamoto, T, Takao, Y, Egashira, M 2000 Desorption behavior of ammonia from TiO2-based specimens—ammonia sensing mechanism of double-layer sensors with TiO2-based catalyst layers. J Mol Catal A Chem 155:183–191 .
6. Zhang, W, Zhang, W 2008 Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fish. Sens Actuators B 134:403–408 .
7. Yu, JH, Choi, GM 1998 Electrical and CO gas sensing properties of ZnO–SnO2 composites. Sens Actuators B 52:251–256 .
8. Khorami, HA, Keyanpour-Rad, M, Vaezi, MR 2011 Synthesis of SnO2/ZnO composite nanofiber by electrospinning method and study of its ethanol sensing properties. Appl Surf Sci 257:7988–7992 .
9. Tang, H, Yan, M, Zhang, H, Li, S, Ma, X, Wang, M, Yang, D 2006 A selective NH3 gas sensor based of Fe2O3–ZnO nanocomposites at room temperature. Sens Actuators B 114:910–915 .
10. Kotsikau, D, Ivanovskaya, M, Orlik, D, Falasconi, H 2004 Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites. Sens Actuators B 101:199–206 .
11. Rumyantseva, M, Kovalenko, V, Gaskov, A, Makshina, E, Yuschenko, V, Ivanova, I, Ponzoni, A, Faglia, G, Comini, E 2006 Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens Actuators B 118:208–214 .
12. Shouli, B, Dianqing, L, Dongmei, H, Ruixian, L, Aifan, C, Liu, CC 2010 Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2. Sens Actuators B 150:749–755 .
13. Moon, WJ, Yu, JH, Choi, GM 2004 Selective gas detection of SnO2–TiO2 gas sensors. J Electron 13:707–713.
14. Aifan, C, Shouli, B, Bingjie, S, Zhiyong, L, Dianging, L, Liu, CC 2008 Methane gas-sensing and catalytic oxidation activity of SnO2–In2O3 nanocomposites incorporating TiO2. Sens Actuators B 135:7–12 .
15. Shouli, B, Liangyuan, C, Pengcheng, Y, Ruixian, L, Aifan, C, Liu, CC 2008 Sn/In/Ti nanocomposite sensor for CH4 detection. Sens Actuators B 135:1–6 .
16. Radecka, M, Zakrzewska, K, Rekas, M 1998 SnO2–TiO2 solid solutions for gas sensors. Sens Actuators B 47:193–199 .
17. Carotta, MC, Gherardi, S, Guidi, V, Malagu, C, Martinelli, G, Vendemiati, B, Sacerdoti, M, Ghiotti, G, Morandi, S, Bismuto, A, Maddalena, P, Setaro, A 2008 (Ti, Sn)O2 binary solid solutions for gas sensing: spectroscopic, optical and transport properties. Sens Actuators B 130:38–45 .
18. Carotta, MC, Gherardi, S, Guidi, V, Malagu, C, Martinelli, G, Vendemiati, B, Sacerdoti, M 2009 Electrical and spectroscopic properties of Ti0.2Sn0.8 solid solution for gas sensing. Thin Solid Films 517:6176–6183 .
19. Zeng, W, Liu, T, Wang, Z 2010 Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Phys E 43:633–638 .
20. Zakrzewska, K, Radecka, M 2007 TiO2–SnO2 system for gas sensing—photodegradation of organic contaminants. Thin Solid Films 515:8332–8338 .
21. Madarász, J, Brăileanu, A, Crişan, M, Răileanu, M, Pokol, G 2009 Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS. J Therm Anal Calorim 97:265–271 .
22. Sergent, N, Gélin, P, Périer-Camby, L, Praliaud, H, Thomas, G 2003 Study of the interactions between carbon monoxide and high specific surface area tin dioxide. Thermogravimetric analysis and FTIR spectroscopy. J Therm Anal Calorim 72:1117–1126 .
23. Pulisova, P, Bohacek, J, Subrt, J, Szatmary, L, Bezdicka, P, Vecernıkova, E, Balek, V 2010 Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J Therm Anal Calorim 101:607–613 .
24. Crisan, M, Braileanu, A, Crisan, D, Raileanu, M, Dragan, N, Mardare, D, Teodorescu, V, Ianculescu, A, Birjega, R, Dumitru, M 2008 Thermal behaviour study of some sol-gel TiO2 based materials. J Therm Anal Calorim 1:7–13 .
25. Banerjee, S, Kumar, A, Sujatha Devi, P 2011 Preparation of nanoparticles of oxides by the citrate-nitrate process. Effect of metal ions on the thermal decomposition characteristics. J Therm Anal Calorim 104:859–867 .