Authors:
E. Kamseu Department of Materials and Environmental Engineering, University of Modena and Reggio Emilia, Via Vignolese 905/A, 41125, Modena, Italy

Search for other papers by E. Kamseu in
Current site
Google Scholar
PubMed
Close
,
B. Ceron Department Werkstoffwissenschaften Lehrstuhl fur Glas Und Keramik, Universtat Erlangen-Nurnberg, Martensstr. 5, 91058, Erlangen, Germany

Search for other papers by B. Ceron in
Current site
Google Scholar
PubMed
Close
,
H. Tobias Department Werkstoffwissenschaften Lehrstuhl fur Glas Und Keramik, Universtat Erlangen-Nurnberg, Martensstr. 5, 91058, Erlangen, Germany

Search for other papers by H. Tobias in
Current site
Google Scholar
PubMed
Close
,
E. Leonelli Department of Materials and Environmental Engineering, University of Modena and Reggio Emilia, Via Vignolese 905/A, 41125, Modena, Italy

Search for other papers by E. Leonelli in
Current site
Google Scholar
PubMed
Close
,
M. C. Bignozzi Department of Civil, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy

Search for other papers by M. C. Bignozzi in
Current site
Google Scholar
PubMed
Close
,
A. Muscio Department of Mechanical and Civil Engineering, University of Modena and Reggio Emilia, Via Vignolese 905/B, 41125, Modena, Italy

Search for other papers by A. Muscio in
Current site
Google Scholar
PubMed
Close
, and
A. Libbra Department of Mechanical and Civil Engineering, University of Modena and Reggio Emilia, Via Vignolese 905/B, 41125, Modena, Italy

Search for other papers by A. Libbra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermo physical behavior of metakaolin-based geopolymer materials was investigated. Five compositions of geopolymers were prepared with Si/Al from 1.23 to 2.42 using mix of sodium and potassium hydroxide (~7.5 M) as well as sodium silicate as activator. The products obtained were characterized after complete curing to constant weight at room temperature. The thermal diffusivity (2.5–4.5 × 10−7m2/s) and thermal conductivity (0.30–0.59 W/m K) were compared to that of existing insulating structural materials. The correlation between the thermal conductivity and parameters as porosity, pore size distribution, matrix strengthening, and microstructure was complex to define. However, the structure of the geopolymer matrix, typical porous amorphous network force conduction heat flux to travel through very tortuous routes consisting of a multiple of neighboring polysialate particles.

  • 1. Bauer, TH 1993 A general analytical approach toward the thermal conductivity of porous media. Int J Heat Transf 36:41814191 .

  • 2. Woodside, W, Messmer, JM 1961 Thermal conductivity of porous media. J Appl Phys 32 9 16881706 .

  • 3. Samantray, PK, Karthikeyan, P, Reddy, KS 2006 Estimating effective thermal conductivity of two-phase materials. Int J Heat Mass Transf 49:42094219 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Côté, J, Konard, J-M 2009 Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials. Int J Heat Mass Transf 52:786804 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Zschiegner, S, Russ, S, Bunde, A, Karger, J 2007 Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer) diffusion. Lett J Explor Front Phys 78:2000120005.

    • Search Google Scholar
    • Export Citation
  • 6. Stark, I, Stordeur, M, Syrowatka, F 1993 Thermal conductivity of thin amorphous alumina films. Thin Solids Films 226:185190 .

  • 7. Demirboga, R, Gul, R 2003 The effects of expanded perlite aggregate silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res 33:723727 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Fu, X, Chung, DDL 1997 Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cem Concr Res 27:17991804 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Macgree, AE 1927 Some thermal characteristics of clays. J Am Ceram Soc 10 8 561568 .

  • 10. Michot, A, Smith, DS, Degot, S, Gault, C 2008 Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment. J Eur Ceram Soc 28:26392644 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Cheng, TW, Chiu, JG 2003 Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16:205210 .

  • 12. Comerie, DC, Kriven, WM 2003 Composite cold ceramic geopolymer in a refractory application. Ceram Trans 153:211225.

  • 13. Duxson, P, Luckey, GC JSJ van Deventer 2006 Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind Eng Chem Res 45:77817788 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Prud'Homme, E, Michaud, P, Joussein, E, Peyratout, C, Smith, A, Rossignol, S 2011 In situ inorganic foams prepared from various clays at low temperature. Appl Clay Sci 51 1–2 1522 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Prud'Homme, E, Michaud, P, Joussein, E, Peyratout, C, Smith, A, Arri-Clacens, S, Clacens, JM, Rossignol, S 2010 Silica fume as porogent agent in geo-materials at low temperature. J Eur Ceram Soc 30:16411648 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Pouchon, MA, Degueldre, C, Tissot, P 1998 Determination of the thermal conductivity in zirconia based inert matrix nuclear fuel by oscillating differential scanning calorimetry and laser flash. Thermochim Acta 323:109121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Gilbert, B, Mainprice, D 2005 Effect of crystal preferred orientations on the thermal diffusivity of quartz polycrystalline aggregates at high temperature. Teconophysics 465:150163 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Enguehard, F 2007 Multiscale modelling of radiation heat transfer through nanoporous superinsulating materials. Int J Thermophys 28 5 16931717 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Parker, WJ, Jenkins, RJ, Butler, CP, Abbott, GL 1961 Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys 32:16791684 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Lachi, M, Degiovanni, A 1991 Determination des diffusivités thermiques des matériaux anisotropes par methode flash bidimensionnelle. J Appl III 1:20272046.

    • Search Google Scholar
    • Export Citation
  • 21. Degiovanni, A, Laurent, M 1986 Une nouvelle technique d'identification de la diffusivité thermique pour la methode flash. Rev Phys Appl 21:229237 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Mojumdar, SC, Sain, M, Prasad, RC, Sun, L, Venart, JES 2007 Selected thermoanalytical methods and their applications from the medicine to construction, part I. J Therm Anal Calorim 90 3 653662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 27 0 0
Sep 2024 63 2 2
Oct 2024 157 0 0
Nov 2024 109 0 0
Dec 2024 52 0 0
Jan 2025 25 1 0
Feb 2025 0 0 0