View More View Less
  • 1 Sakarya University, Metallurgy and Materials Engineering, 54187, Sakarya, Turkey
Restricted access

Abstract

The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite + alumina ceramic system have been studied by differential thermal analysis (DTA). The mixture of kaolinite and alumina was activated mechanically in a planetary mill, while amorphization in the kaolinite and alumina structure was studied by X-ray diffraction analysis. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20 °C min−1. The mechanical activation of the kaolinite and alumina mixture resulted in the decrease in activation energy values for mullite formation.

  • 1. Ganesh, I, Ferreia, JMF 2009 Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceram Int 35:20072015 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Koç, S, Toplan, N, Yildiz, K, Toplan, HO 2011 Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim 103 3 791796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Okada, K 2008 Activation energy of mullitization from various starting materials. J Eur Ceram Soc 28:377382 .

  • 4. Okada, K, Otsuka, N, Somiya, S 1991 Review of mullite synthesis routes in Japan. Am Ceram Soc Bull 70 10 16331640.

  • 5. Liu, KC, Thomas, G, Caballero, A, Moya, JS, Aza, SD 1994 Mullite formation in kaolinite–α-alumina. Acta Metall Mater 42 2 489495 .

  • 6. Sahnoune, F, Chegaar, M, Saheb, N, Goeuriot, P, Valdivieso, F 2008 Algerian kaolinite used for mullite formation. Appl Clay Sci 38:304310 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Temuujin, J, MacKenzie, KJD, Schmücker, M, Schneider, H, McManus, J, Wimperis, S 2000 Phase evolution in mechanically treated mixtures of kaolinite and alumina hydrates (gibbsite and boehmite). J Eur Ceram Soc 20:413421 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Viswabaskaran, V, Gnanam, FD, Balasubramanian, M 2004 Mullite from clay–reactive alumina for insulating substrate application. Appl Clay Sci 25:2935 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Liu, KC, Thomas, G 1994 Time–temperature–transformation curves for kaolinite–α-alumina. J Am Ceram Soc 77 6 15451552 .

  • 10. Chen, CY, Lan, GS, Tuan, WH 2000 Preparation of mullite by the reaction sintering of kaolinite and alumina. J Eur Ceram Soc 20:25192525 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Chen, YF, Wang, MC, Hon, MH 2003 Transformation kinetics for mullite in kaolin-Al2O3 ceramics. J Mater Res 18 6 13551362 .

  • 12. Vizcayno, C, Castello, R, Ranz, I, Calvo, B 2005 Some physico-chemical alterations caused by mechanochemical treatments in kaolinites of different structural order. Thermochimica Acta 428:173183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Behmanesh, N, Heshmati-Manesh, S, Ataie, A 2008 Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. J Alloys Compd 450:421425 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Boldyrev, VV, Tkacova, T 2000 Mechanochemistry of solids: past, present, and prospects. J Mater Synt Proc 8 3–4 121132 .

  • 15. Steinike, U, Tkacova, K 2000 Mechanochemistry of solids—real structure and reactivity. J Mater Synt Proc 8 3–4 197203 .

  • 16. Ohlberg, SM, Strickler, DW 1962 Determination of percent crystallinity of partly devitrified glass by X-ray diffraction. J Am Ceram Soc 45:170171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Balaz, P 2008 Mechanochemistry in nanoscience and minerals engineering Springer-Verlag Berlin.

  • 18. Vyazovkin, S 2008 Isoconversional kinetics ME Brown PK Gallagher eds. Handbook of thermal analysis and calorimetry Elsevier BV Amsterdam 503538.

    • Search Google Scholar
    • Export Citation
  • 19. Tromans, D, Meech, JA 1999 Enhanced dissolution of minerals: microtopography and mechanical activation. Miner Eng 12 6 13591377 .

  • 20. Tromans, D, Meech, JA 2001 Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation. Miner Eng 14 11 13591377 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Miller, JG, Oulton, TD 1970 Prototropy in kaolinite during percussive grinding. Clay and Clay Miner 18 6 313323 .

  • 22. Frost, RL, Horvath, E, Mako, E, Kristof, J, Redey, A 2003 Slow transformation of mechanically dehydroxylated kaolinite to kaolinite–an aged mechanochemically activated formadide-intercelated kaolinite study. Thermochimica Acta 408:103113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Chakraborty, AK 2003 DTA study of preheated kaolinite in the mullite formation region. Thermochimica Acta 398:203209 .

  • 24. Sakizci, M, Alver, BE, Yörükoğullari, E 2009 Thermal behavior and immersion heats of selected clays from Turkey. J Therm Anal Calorim 98:429436 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Kamseu, E, Rizzuti, A, Miselli, P, Veronesi, P, Leonelli, C 2009 Use of noncontact dilatometry for the assessment of the sintering kinetics during mullitization of three kaolinitic clays from Cameroon. J Therm Anal Calorim 98:757763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Traore, K, Gridi-Bennadji, F, Blanchart, P 2006 Significance of kinetic theories on the recrystallization of kaolinite. Thermochimica Acta 451:99104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Tkacova, K 1989 Mechanical activation of minerals Elsevier Amsterdam.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)