View More View Less
  • 1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
Restricted access

Abstract

The single phase α-LiZnPO4·H2O was directly synthesized via solid-state reaction at room temperature using LiH2PO4·H2O, ZnSO4·7H2O, and Na2CO3 as raw materials. XRD analysis showed that α-LiZnPO4·H2O was a compound with orthorhombic structure. The thermal process of α-LiZnPO4·H2O experienced two steps, which involved the dehydration of one crystal water molecule at first, and then the crystallization of LiZnPO4. The DTA curve had the one endothermic peak and one exothermic peak, respectively, corresponding to dehydration of α-LiZnPO4·H2O and crystallization of LiZnPO4. Based on the iterative iso-conversional procedure, the average values of the activation energies associated with the thermal dehydration of α-LiZnPO4·H2O, was determined to be 86.59 kJ mol−1. Dehydration of the crystal water molecule of α-LiZnPO4·H2O is single-step reaction mechanism. A method of multiple rate iso-temperature was used to define the most probable mechanism g(α) of the dehydration step. The dehydration step is contracting cylinder model (g(α) = 1−(1−α)1/2) and is controlled by phase boundary reaction mechanism. The pre-exponential factor A was obtained on the basis of Ea and g(α). Besides, the thermodynamic parameters (ΔS, ΔH, and ΔG) of the dehydration reaction of α-LiZnPO4·H2O were determined.

  • 1. Vasovic, DD, Stojakovic, DR 1997 Metal phosphate preparation using boron phosphate. Mater Res Bull 32:779784 .

  • 2. Chen, J, Natarajan, S, Thomas, JM, Jones, RH, Hursthouse, MB 1994 A novel open-framework cobalt phosphate containing a tetrahedrally coordinated cobalt(II) center: CoPO4·0.5C2H10N2. Angew Chem Int Ed 33:639640 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Gier, TE, Stucky, GD 1991 Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves. Nature 349:508510 .

  • 4. Ng, HY, Harrison, WTA 1998 Monoclinic NaZnPO4-ABW, a new modification of the zeolite ABW structure type containing elliptical eight-ring channels. Micropor Mesopor Mater 23:197202 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Harrison, WTA, Gier, TE, Nicol, JM, Stucky, GD 1995 Tetrahedral-framework lithium zinc phosphate phases: location of light-atom positions in LiZnPO4·H2O by powder neutron diffraction and structure determination of LiZnPO4 by ab initio methods. J Solid State Chem 114:249257 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Jensen, TR 1998 A new polymorph of LiZnPO4·H2O: synthesis, crystal structure and thermal transformation. J Chem Soc Dalton Trans 18:22612266 .

  • 7. Bu, XH, Gier, TE, Stucky, GD 1998 A new polymorph of lithium zinc phosphate with the cristobalite-type framework topology. J Solid State Chem 138:126130 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Bensalem, A 2001 Synthesis and characterization of a new layered lithium zinc phosphate hydrate. J Solid State Chem 162:2933 .

  • 9. Jensen, TR, Hazell, RG, NØrlund Christensen, A, Hanson, JC 2002 Hydrothermal synthesis of lithium zinc phosphates: Structural investigation of twinned α-Li4Zn(PO4)2 and a high temperature polymorph β-Li4Zn(PO4)2. J Solid State Chem 166:341351 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Xin, XQ, Zheng, LM 1993 Solid state reactions of coordination compounds at low heating temperatures. J Solid State Chem 106:451460 .

  • 11. Lang, JP, Xin, XQ 1994 Solid state synthesis of Mo(W)-S cluster compounds at low heating temperatures. J Solid State Chem 108:118127 .

  • 12. Yao, XB, Zheng, LM, Xin, XQ 1995 Synthesis and characterization of solid-coordination compounds Cu(AP)2Cl2. J Solid State Chem 117:333336 .

  • 13. Li, QW, Luo, GA, Shu, YQ 2000 Response of nanosized cobalt oxide electrodes as pH sensors. Anal Chim Acta 409:137142 .

  • 14. Cao, YL, Liu, L, Jia, DZ, Xin, XQ 2005 One-step solid-state synthesis and characterization of two kinds of ZnC2O4·2H2O hollow nanostructures. Chin J Chem 23:539542 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Cao, YL, Jia, DZ, Liu, L, Luo, JM 2004 Rapid synthesis of lead oxide nanorods by one-step solid-state chemical reaction at room temperature. Chin J Chem 22:12881290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Pawlig, O, Trettin, R 1999 Synthesis and characterization of α-hopeite, Zn3(PO4)2·4H2O. Mater Res Bull 34:19591966 .

  • 17. Kowalak, S, Jankowska, A, Baran, E 2001 Spontaneous crystallization of zincophosphate sodalite by means of dry substrate grinding. Chem Commun 6:575576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Liao, S, Wu, WW, Sun, YB, Song, BL 2008 A simple and novel route for the preparation of chiral sodium zincophosphate. Chin J Chem 26:281285 .

  • 19. Yu, H, Xu, QF, Sun, ZR, Ji, SJ, Chen, JX, Liu, Q, Lang, JP, Tatsumi, K 2001 Unique formation of two different W/Ag/S clusters from the same components via a low heating temperature solid state reaction and a solution reaction and their third-order NLO properties in solution. Chem Commun 1:26142615 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Chen, JX, Xu, QF, Xu, Y, Zhang, Y, Chen, ZN, Lang, JP 2004 Solid-state reactions of AgAc with TabHPF6 at room temperature-isolation and structural characterisation of an unusual octadecanuclear silver thiolate cluster [Ag9(Tab)8(MeCN)8]2 (PF6)18·4MeCN [Tab = 4-(trimethylammonio)benzenethiolate]. Eur J Inorg Chem 2004:42474252 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Chen, JX, Tang, XY, Chen, Y, Zhang, WH, Li, LL, Yuan, RX, Zhang, Y, Lang, JP 2009 Formation of four different [MoOS3Cu3]-based coordination polymers from the same components via four synthetic routes. Cryst Growth Des 9:14611469 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Liao, S, Chen, ZP, Tian, XZ, Wu, WW 2009 Synthesis and regulation of α-LiZnPO4·H2O via a solid state reaction at low-heating temperatures. Mater Res Bull 44:14281431 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Wu, WW, Jiang, QY 2006 Preparation of nanocrystalline zinc carbonate and zinc oxide via solid state reaction at room temperature. Mater Lett 60:27912794 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Vyazovkin, S, Burnham, AK, Criado, JM, Pérez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N 2011 ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Genieva, SD, Vlaev, LT, Atanassov, AN 2010 Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 99:551561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Liqing, L, Donghua, C 2004 Application of iso-temperature method of multiple rate to kinetic analysis. Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim 78:283293 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Chunxiu, G, Yufang, S, Donghua, C 2004 Comparative method to evaluate reliable kinetic triplets of thermal decomposition reactions. J Therm Anal Calorim 76:203216 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Gao, Z, Amasaki, I, Nakada, M 2002 A description of kinetics of thermal decomposition of calcium oxalate monochydrate by means of the accommodated Rn model. Thermochim Acta 385:95103 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Gao, X, Dollimore, D 1993 The thermal decomposition of oxalates: part 26. A kinetic study of the thermal decomposition of manganese(II) oxalate dehydrate. Thermochim Acta 215:4763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Ozawa, T 1965 A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:18811886 .

  • 31. Paik, P, Kar, KK 2008 Kinetics of thermal degradation and estimation of lifetime for polypropylene particle: effect of particle size. Polym Degrad Stab 93:2435 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Flynn, JH 1997 The ‘Temperature Integral’—its use and abuse. Thermochim Acta 300:8392 .

  • 33. Chrissafis, K 2009 Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim 95:273283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Cadenato, A, Morancho, JM, Fernandez-Francos, X, Salla, JM, Ramis, X 2007 Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems. J Therm Anal Calorim 89:233244 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Su, T-T, Jiang, H, Gong, H 2008 Thermal stabilities and the thermal degradation kinetics of poly(∊-Caprolactone). Polymer-Plastics Technol Eng 47:398403 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Senum, GI, Yang, RT 1977 Rational approximations of the integral of the Arrhenius function. J Therm Anal 11:445447 .

  • 37. Boonchom, B, Puttawong, S 2010 Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B 405:23502355 .

  • 38. Vlaev, L, Nedelchev, N, Gyurova, K, Zagorcheva, M 2008 A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81:253262 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)