Nanosize Co1−xZnxFe2O4 (x = 0, 0.1, 0.3, and 0.4) have been synthesized by the precursor combustion technique via autocatalytic combustion of the mixed-metal fumarato-hydrazinate precursors. A key feature of these precursors is that they decompose autocatalytically once ignited to give the monophasic nanocrystalline ferrite. This fact is confirmed by X-ray powder diffraction analysis. The thermal decomposition pattern of the precursors has been studied by thermogravimetric and differential thermal analysis. The precursors have also been characterized by FTIR and chemical analysis to fix the chemical composition. The Curie temperature (Tc) of the “as-prepared” oxide was determined by alternating current susceptibility measurements.
1. Ramana Reddy, AV, Ranga Mohan, G, Ravinder, D, Boyanov, BS 1999 High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J Mat Sci 34:3169–3176 .
2. Josyulu, OS, Sobhanadri, J 1980 DC conductivity and dielectric behaviour of cobalt-zinc ferrites. Phy Stat Sol (a) 59:323–329 .
3. Veverka, M, Veverka, P, Jirak, Z, Kaman, O, Knizek, K, Marysko, M, Pollert, E, Zaveta, K 2010 Synthesis and magnetic properties of Co1−xZnxFe2O4 nanoparticles as materials for magnetic fluid hyperthermia. J Magn Magn Mater 322:2386–2389 .
4. Matsushita, N, Ichinose, M, Nakagawa, S, Naoe, M 1999 Co–Zn ferrite films prepared by facing targets sputtering system for longitudinal recording layer. J Magn Magn Mater 193:68–70 .
5. Mukherjee, K, Majumdar, SB 2010 Hydrogen sensing characteristics of wet chemical synthesized tailored Mg0.5Zn0.5Fe2O4 nanostructures. Nanotechnology 21:255504 .
6. Gedam, NN, Padole, PR, Rithe, SK, Chaudhari, GN 2009 Ammonia gas sensor based on a spinel semiconductor, Co0.8Ni0.2Fe2O4 nanomaterial. J Sol-Gel Sci Tech 50:296–300 .
7. Chen, Z, Gao, L 2007 Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mat Sci Eng B 141:82–86 .
8. Vital, A, Angermann, A, Dittmann, R, Graule, T, Topfer, J 2007 Highly sinter-active (Mg–Cu)–Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Mater 55:1955–1964 .
9. Hua, ZH, Chen, RS, Li, CL, Yang, SG, Lu, M, Gu, XB, Du, YW 2007 CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization. J Alloys Compd 427:199–203 .
10. Thakur, S, Katyal, SC, Singh, M 2009 Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mat 321:1–7 .
11. Maensiri, S, Masingboon, C, Boonchom, B, Seraphin, S 2007 A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Mater 56 9 797–800 .
12. Jiang, J 2007 A facile method to the Ni0.8Co0.2Fe2O4 nanocrystalline via a refluxing route in ethylene glycol. Mater Lett 61:3239–3242 .
13. Singhal, S, Singh, J, Barthwal, SK, Chandra, K 2005 Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1-xNixFe2O4). J Sol State Chem 178:3183–3189 .
14. Verenkar, VMS, Rane, KS 1995 Thermal and electrothermal analysis (ETA) of Iron (II) carboxylato-hydrazinates Part I – Ferrous fumarato-hydrazinate and ferrous succinato-hydrazinate SR Dharwadkar SR Bharadwaj SK Mukherjee DD Sood eds. Proceedings of the 10th national symposium on thermal analysis, thermans Indian Thermal Analysis Society Kanpur 171–174.
15. Verenkar, VMS, Rane, KS 2000 Synthesis, characterization and thermal analysis of ferrous malato-hydrazinate PV Ravindran M Sudersanan NL Misra V Venugopal eds. Proceedings of the 12th national symposium on thermal analysis, thermans Indian Thermal Analysis Society Gorakhpur 194–197.
16. Sawant, SY, Verenkar, VMS, Mojumdar, SC 2007 Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim 90:669–672 .
17. Gonsalves, LR, Verenkar, VMS, Mojumdar, SC 2009 Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3.6N2H4 A precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim 96 1 53–57 .
18. Gonsalves, LR, Verenkar, VMS, Mojumdar, SC 2010 Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J Therm Anal Calorim 100:789–792 .
19. Gonsalves, LR, Verenkar, VMS, Mojumdar, SC 2011 Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim 104:869–873 .
20. More, A, Verenkar, VMS, Mojumdar, SC 2008 Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim 94 1 63–67 .
21. Porob, RA, Khan, SZ, Mojumdar, SC, Verenkar, VMS 2006 Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3.6N2H4: a precursor for NiMn2O4 nano-particles. J Therm Anal Calorim 86 3 605–608 .
22. Sawant, SY, Kannan, KR, Verenkar, VMS 2002 Synthesis, characterisation and thermal analysis of nickel manganese fumarato-hydrazinate CGS Pillai KL Ramakumar PV Ravindran V Venugopal eds. Proceedings of the 13th national symposium on thermal analysis, B.A.R.C Indian Thermal Analysis Society Mumbai 154–155.
23. Jeffery, GH, Bassett, J, Mendham, J, Denney, RC 1989 Vogel's text book of quantitative inorganic analysis 5 Longman England.
24. Braibanti, A, Dallavalle, F, Pellinghelli, MA, Leporati, E 1968 The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg Chem 7:1430–1433 .
25. Gul, IH, Abbasi, AZ, Amin, F, Anis-ur-Rehman, M, Maqsood, A 2007 Structural, magnetic and electric properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 311:494–499 .