Authors:
,
Muhammad Iqbal Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada

Search for other papers by Muhammad Iqbal in
Current site
Google Scholar
PubMed
Close
,
Michael McCullough C-Therm Technologies Ltd, C/O RPC 921 College Hill Road, Fredericton, NB, Canada

Search for other papers by Michael McCullough in
Current site
Google Scholar
PubMed
Close
, and
Adam Harris C-Therm Technologies Ltd, C/O RPC 921 College Hill Road, Fredericton, NB, Canada

Search for other papers by Adam Harris in
Current site
Google Scholar
PubMed
Close
S. Holger Eichhorn Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada

Search for other papers by S. Holger Eichhorn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polyurethane composites containing spherical and flake-shaped silver fillers of micrometer and nanometer sizes were prepared by reacting suspensions of the silver filler in tetraethylene glycol with Desmodur® HL BA. Both the thermal conductivity and the stability of the silver composites are increased in comparison with a reference polyurethane sample without filler. Unexpectedly, the largest increases in thermal conductivity and stability are observed for the spherical silver particles of micrometer size but not for the silver nanoparticles, which is reasoned with larger aggregates of silver particles and a higher degree of crystallinity in the sample containing micrometer-sized silver particles.

  • 1. Luedtke, A 2004 Thermal management materials for high-performance applications. Adv Eng Mater 6 3 142144 .

  • 2. Ong, B, Chow, SG, Tang, E 2005 Thermally enhanced, next-generation 3-D power packages: a heat-management solution. Adv Packaging 14 11 2325.

    • Search Google Scholar
    • Export Citation
  • 3. Zweben, C 1998 Advances in composite materials for thermal management in electronic packaging. JOM 50 6 4751 .

  • 4. Zweben, C 2006 High-performance thermal management materials. Adv Packaging 15 2 2022.

  • 5. Zweben, CH 2007 Advances in high-performance thermal management materials: a review. J Adv Mater 39 1 310.

  • 6. Bulsara, M, Celler, G, White, T, Standley, B, Huff, H 2006 Roadmap requirements for emerging materials. Solid State Technol 49 1 3438.

    • Search Google Scholar
    • Export Citation
  • 7. Fletcher, LS 1990 A review of thermal enhancement techniques for electronic systems. IEEE T Compon Hybr 13 4 10121021 .

  • 8. Zweben, C 2010 Advanced thermal management materials for electronics and photonics. Adv Microelectron 37 4 1419.

  • 9. Saums, D, Jarrett, B, Mackie, AC, Ross, J 2009 Thermal management materials choices for power semiconductors. Adv Microelectron 36 4 816.

    • Search Google Scholar
    • Export Citation
  • 10. Evans, W, Prasher, R, Fish, J, Meakin, P, Phelan, P, Keblinski, P 2008 Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Tran 51 5–6 14311438 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Xingyi, H, Pingkai, J, Liyuan, X 2009 Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl Phys Lett 95 24 242901 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Chou, CW, Hsu, SH, Chang, H, Tseng, SM, Lin, HR 2006 Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polym Degrad Stabil 91 5 10171024 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kim, JY 2003 Amphiphilic polyurethane-co-polystyrene network films containing silver nanoparticles. J Ind Eng Chem 9 1 3744.

  • 14. Chen, S, Sui, J, Chen, L 2004 Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer. Colloid Polym Sci 283 1 6673 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Chou, CW, Hsu, SH, Wang, PH 2008 Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model. J Biomed Mater Res A 84 3 785794.

    • Search Google Scholar
    • Export Citation
  • 16. Dallas, P, Sharma, VK, Zboril, R 2011 Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interfac 166 1–2 119135.

    • Search Google Scholar
    • Export Citation
  • 17. Raja, M, Shanmugharaj, AM, Ryu, SH, Subha, J 2011 Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators. Mater Chem Phys 129 3 925931 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Lin, M-F, Tsen, W-C, Shu, Y-C, Chuang, F-S 2001 Effect of silicon and phosphorus on the degradation of polyurethanes. J Appl Polym Sci 79 5 881899 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Hsu, SH, Tseng, HJ, Lin, YC 2010 The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomater 31 26 67966808 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. S-h, Hsu, Chou, C-W 2004 Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degrad Stabil. 85 1 675680 .

  • 21. Hung, HS, Hsu, SH 2007 Biological performances of poly(ether)urethane-silver nanocomposites. Nanotechnology 18 47 475101475110 .

  • 22. Petrie, EM 2007 Handbook of adhesives and sealants 2 McGraw-Hill New York.

  • 23. Rwei, S-P, Wang, L 2007 Synthesis and electrical, rheological and thermal characterization of conductive polyurethane. Colloid Polym Sci 285 12 13131319 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Erickson, K 2007 Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide). J Therm Anal Calorim 89 2 427440 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Wang, S, Liang, R, Wang, B, Zhang, C 2009 Dispersion and thermal conductivity of carbon nanotube composites. Carbon 47 1 5357 .

  • 26. Sun, Y, Sheng, P, Di, C, Jiao, F, Xu, W, Qiu, D, Zhu, D 2012 Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24 7 932937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2023 1 0 0
May 2023 1 1 0
Jun 2023 1 0 0
Jul 2023 2 0 0
Aug 2023 6 0 0
Sep 2023 6 0 0
Oct 2023 0 0 0