The thermal decomposition of Ho(III), Er(III), Tm(III) and Yb(III) propionate monohydrates in argon was studied by means of thermogravimetry (TG), differential thermal analysis (DTA), IR-spectroscopy and X-ray diffraction (XRD). Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous propionates to Ln2O2CO3 (Ln = Ho, Er, Tm or Yb) with the evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 and 400 °C. The further decomposition of Ln2O2CO3 to the respective sesquioxides Ln2O3 is characterized by an intermediate plateau extending from approximately 500–700 °C in the TG traces. This stage corresponds to an overall composition of Ln2O2.5(CO3)0.5 but is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state decreases for the lighter rare-earth (RE) compounds studied. Full conversion to Ln2O3 is achieved at about 1,100 °C. The overall thermal decomposition behaviour of the title compounds is similar to that previously reported for Lu(C2H5CO2)3·H2O.
1. Izumi, T, Shiohara, Y 2010 R&D of coated conductors for applications in Japan. Physica C 470:967–970 .
2. Bhuiyan, MS, Paranthaman, M, Sathyamurthy, S 2007 Chemical solution-based epitaxial oxide films on biaxially textured Ni–W substrates with improved out-of-plane texture for YBCO-coated conductors. J Electron Mater 36:1270–1274 .
3. Lee, SG, Han, TS 1997 High-Tc YBa2Cu3O7−δ thin films fabricated from a stable acetate solution precursor. J Korean Phys Soc 31:406–409.
4. Matsubara, I, Paranthaman, M, Chirayil, TG, Sun, EY, Martin, PM, Kroeger, DM, Verebelyi, DT, Christen, DK 1999 Preparation of epitaxial YbBa2Cu3O7 − δ on SrTiO3 single crystal substrates using a solution process. Jpn J Appl Phys 38:L727–L730 .
5. Lee, HY, Kim, SI, Lee, YC, Hong, YP, Park, YH, Ko, KH 2003 New chemical route for YBCO thin films. IEEE Trans Appl Supercond 13:2743–2766 .
6. Angrisani Armenio A , Augieri A, Ciontea L, Contini G, Davoli I, Galluzzi V, Mancini A, Rufoloni A, Petrisor T, Vannozzi A, Celentano G. Characterization of epitaxial YBa2Cu3O7 − δ films deposited by metal propionate precursor solution. Supercond Sci Technol. 2008;21: 125015 (7 pp).
7. Ciontea L , Angrisani A, Celentano G, Petrisor T Jr, Rufoloni A, Vannozzi A, Augieri A, Galuzzi V, Mancini A, Petrisor T. Metal propionate synthesis of epitaxial YBa2Cu3O7 − x films. J Phys Conf Ser. 2008;97: 012302 (6 pp).
8. Angrisani Armenio, A, Celentano, G, Rufoloni, A, Vannozzi, A, Augieri, A, Galluzzi, V, Mancini, A, Ciontea, L, Petrisor, T, Contini, G, Davoli, I 2009 Deposition and characterisation of metal propionate derived epitaxial YBa2Cu3O7 − x films for coated conductor fabrication. IEEE Trans Appl Supercond 19:3204–3207 .
9. Knoth, K, Schlobach, B, Hühne, R, Schultz, L, Holzapfel, B 2005 La2Zr2O7 and Ce–Gd–O buffer layers for YBCO coated conductors using chemical solution deposition. Physica C 426–431:979–984 .
10. Hassini, A, Pomar, A, Ruyter, A, Roma, N, Puig, T, Obradors, X 2007 Conducting La0.7Sr0.3MnO3-superconducting YBaCu3O7 epitaxial bilayers grown by chemical solution deposition. Physica C 460–462:1357–1358 .
11. Chen, HS, Kumar, RV, Glowacki, BA 2009 Study on chemical-solution-deposited lanthanum zirconium oxide film based on the Taguchi method. J Sol–Gel Sci Technol 51:102–111 .
12. Zhao, Y, Suo, HL, Grivel, JC, Ye, S, Liu, M, Zhou, ML 2009 Study on CexLa1 − xO2 buffer layer used in coated conductors by chemical solution method. J Inorg Mater 24:1201–1204 .
13. Larbalestier, D, Gurevich, A, Feldmann, DM, Polyanskii, A 2001 High-Tc superconducting materials for electric power applications. Nature 414:368–377 .
14. Coll M , Pomar A, Puig T, Obradors X. Atomically flat surface: the key issue for solution-derived epitaxial multilayers. Appl Phys Exp 2008;1: 121701 (3 pp).
15. Kaddouri, A, Mazzocchia, C, Tempesti, E, Nomen, R, Sempere, J 1009 Sol-gel processing of copper-chromium catalysts for ester hydrogenation. J Therm Anal 53:533–545 .
16. Gobert-Ranchoux, E, Charbonnier, F 1977 Comportement thermique des propionates hydrates de calcium, strontium et barium. J Therm Anal 12:33–42 .
17. Kaddouri, A, Mazzocchia, CJ 2002 Thermoanalytic study of some metal propionates synthesised by sol-gel route: a kinetic and thermodynamic study. J Anal Appl Pyrolysis 65:253–267 .
18. Ciontea, L, Nasui, M T Petrisor Jr Mos, RB, Gabor, MS, Varga, RA, Petrisor, T 2010 Synthesis, crystal structure and thermal decomposition of [La2(CH3CH2COO)6·(H2O)3]·3.5H2O precursor for high-k La2O3 thin films deposition. Mater Res Bull 45:1203–1208 .
19. Grivel, JC 2010 Thermal decomposition of lutetium propionate. J Anal Appl Pyrolysis 89:250–254 .
20. Sakharova, YG, Bogodukhova, TI, Evtushenko, IY, Loginov, VI 1979 Thermal decomposition of carbamide compounds of thulium, ytterbium and lutetium propionates. Z Neorg Khim 24:323–330.
21. Nadzharyan, K, Mlynskaya, V, Magunov, R 1984 LiC2H5COO–Y(C2H5COO)3–H2O system at 25 °C. Russ J Inorg Chem (Engl Transl) 29:1797–1799.
22. Liu, S, Ma, RJ 1997 Synthesis of hydrated lutetium carbonate. Acta Chem Scand 51:893–895 .
23. Hussein, GAM, Balboul, BAA 1999 Ytterbium oxide from different precursors: formation and characterization. Thermoanalytical studies. Powder Technol 103:156–164 .
24. Hussein, GAM, Mekhemer, GAH, Balboul, BAA 2000 Formation and surface characterization of thulium oxide catalysts. Phys Chem Chem Phys 2:2033–2038 .
25. Hussein, GAM, Balboul, BAA, Mekhemer, GAH 2000 Holmium oxide from holmium acetate, formation and characterization: thermoanalytical studies. J Anal Appl Pyrolysis 56:263–272 .
26. Mahfouz, RM, Al-Shehri, SM, Monshi, MAS, Alhaizan, AI, Abd El-Salam, NM 2007 Isothermal decomposition of γ-irradiated erbium acetate. Radiat Eff Defects Solids 162:95–100 .
27. Balboul, BAA 2000 Thermal decomposition study of erbium oxalate hexahydrate. Thermochim Acta 351:55–60 .
28. Glasner, A, Levy, E, Steinberg, M 1964 Thermal decomposition of ytterbium oxalate. J Inorg Nucl Chem 26:1143–1149 .
29. Masuda, Y 1983 Thermal decomposition of formates. Part IX. Thermal decomposition of rare earth formate anhydrides. Thermochim Acta 67:271–285 .
30. Muraishi, K, Yokobayashi, H, Nagase, K 1991 Systematics on the thermal reactions of lanthanide malonates Ln2(C3H2O4)3·nH2O in the solid state. Thermochim Acta 182:209–217 .
31. Hites, A, Biemann, K 1972 On the mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. J Am Chem Soc 94:5772–5777 .
32. Barnes, PA, Stephenson, G, Warrington, SB 1982 The use of TA–GLC–MS as a quantitative specific EGA technique for the investigation of complex thermal decomposition reactions: the thermal decomposition of calcium propanoate. J Therm Anal 25:299–311 .
33. Skoršepa, J, Godočíkova, E, Černák, J 2004 Comparison on thermal decomposition of propionate, benzoate and their chloroderivative salts of Zn(II). J Therm Anal Calorim 75:773–780 .
34. El Baydi, M, Poillerat, G, Rehspringer, JL, Gautier, JL, Koenig, JF, Charlier, P 1994 A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J Solid State Chem 109:281–288 .
35. McDevitt, NT, Baun, WL 1964 Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim Acta 20:799–808 .
36. Dododzhanov, MA, Komarov, VP, Shaplygin, IS 1986 Thermal decomposition of dysprosium, holmium, erbium and ytterbium abietates. Zh Neorg Khim 31:640–642.
37. Nagashima, K, Wakita, H, Mochizuki, A 1973 The synthesis of crystalline rare earth carbonates. Bull Chem Soc Jpn 46:152–156 .
38. Glasner, A, Steinberg, M 1961 Thermal decomposition of the light rare earth oxalates. J Inorg Nucl Chem 22:39–48 .
39. Moscardini D'Assunção, L, Giolito, I, Ionashiro, M 1989 Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochim Acta 137:319–330 .
40. Sakharova, YG, Bogodukhova, TI, Loginov, VI, Evtushenko, IY 1978 Thermal decomposition of carbamide compounds of terbium, dysprosium, holmium, erbium and yttrium propionates. Z Neorg Khim 23:2953–2958.
41. Turcotte, RP, Sawyer, JO, Eyring, L 1969 On the rare earth dioxymonocarbonates and their decomposition. Inorg Chem 8:238–246 .