View More View Less
  • 1 Materials Research Division, Ris⊘ National Laboratory for Sustainable Energy, Technical University of Denmark, 4000, Roskild, Denmark
Restricted access

Abstract

The thermal decomposition of Ho(III), Er(III), Tm(III) and Yb(III) propionate monohydrates in argon was studied by means of thermogravimetry (TG), differential thermal analysis (DTA), IR-spectroscopy and X-ray diffraction (XRD). Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous propionates to Ln2O2CO3 (Ln = Ho, Er, Tm or Yb) with the evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 and 400 °C. The further decomposition of Ln2O2CO3 to the respective sesquioxides Ln2O3 is characterized by an intermediate plateau extending from approximately 500–700 °C in the TG traces. This stage corresponds to an overall composition of Ln2O2.5(CO3)0.5 but is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state decreases for the lighter rare-earth (RE) compounds studied. Full conversion to Ln2O3 is achieved at about 1,100 °C. The overall thermal decomposition behaviour of the title compounds is similar to that previously reported for Lu(C2H5CO2)3·H2O.

  • 1. Izumi, T, Shiohara, Y 2010 R&D of coated conductors for applications in Japan. Physica C 470:967970 .

  • 2. Bhuiyan, MS, Paranthaman, M, Sathyamurthy, S 2007 Chemical solution-based epitaxial oxide films on biaxially textured Ni–W substrates with improved out-of-plane texture for YBCO-coated conductors. J Electron Mater 36:12701274 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Lee, SG, Han, TS 1997 High-Tc YBa2Cu3O7−δ thin films fabricated from a stable acetate solution precursor. J Korean Phys Soc 31:406409.

    • Search Google Scholar
    • Export Citation
  • 4. Matsubara, I, Paranthaman, M, Chirayil, TG, Sun, EY, Martin, PM, Kroeger, DM, Verebelyi, DT, Christen, DK 1999 Preparation of epitaxial YbBa2Cu3O7 − δ on SrTiO3 single crystal substrates using a solution process. Jpn J Appl Phys 38:L727L730 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Lee, HY, Kim, SI, Lee, YC, Hong, YP, Park, YH, Ko, KH 2003 New chemical route for YBCO thin films. IEEE Trans Appl Supercond 13:27432766 .

  • 6. Angrisani Armenio A , Augieri A, Ciontea L, Contini G, Davoli I, Galluzzi V, Mancini A, Rufoloni A, Petrisor T, Vannozzi A, Celentano G. Characterization of epitaxial YBa2Cu3O7 − δ films deposited by metal propionate precursor solution. Supercond Sci Technol. 2008;21: 125015 (7 pp).

    • Search Google Scholar
    • Export Citation
  • 7. Ciontea L , Angrisani A, Celentano G, Petrisor T Jr, Rufoloni A, Vannozzi A, Augieri A, Galuzzi V, Mancini A, Petrisor T. Metal propionate synthesis of epitaxial YBa2Cu3O7 − x films. J Phys Conf Ser. 2008;97: 012302 (6 pp).

    • Search Google Scholar
    • Export Citation
  • 8. Angrisani Armenio, A, Celentano, G, Rufoloni, A, Vannozzi, A, Augieri, A, Galluzzi, V, Mancini, A, Ciontea, L, Petrisor, T, Contini, G, Davoli, I 2009 Deposition and characterisation of metal propionate derived epitaxial YBa2Cu3O7 − x films for coated conductor fabrication. IEEE Trans Appl Supercond 19:32043207 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Knoth, K, Schlobach, B, Hühne, R, Schultz, L, Holzapfel, B 2005 La2Zr2O7 and Ce–Gd–O buffer layers for YBCO coated conductors using chemical solution deposition. Physica C 426–431:979984 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Hassini, A, Pomar, A, Ruyter, A, Roma, N, Puig, T, Obradors, X 2007 Conducting La0.7Sr0.3MnO3-superconducting YBaCu3O7 epitaxial bilayers grown by chemical solution deposition. Physica C 460–462:13571358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Chen, HS, Kumar, RV, Glowacki, BA 2009 Study on chemical-solution-deposited lanthanum zirconium oxide film based on the Taguchi method. J Sol–Gel Sci Technol 51:102111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Zhao, Y, Suo, HL, Grivel, JC, Ye, S, Liu, M, Zhou, ML 2009 Study on CexLa1 − xO2 buffer layer used in coated conductors by chemical solution method. J Inorg Mater 24:12011204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Larbalestier, D, Gurevich, A, Feldmann, DM, Polyanskii, A 2001 High-Tc superconducting materials for electric power applications. Nature 414:368377 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Coll M , Pomar A, Puig T, Obradors X. Atomically flat surface: the key issue for solution-derived epitaxial multilayers. Appl Phys Exp 2008;1: 121701 (3 pp).

    • Search Google Scholar
    • Export Citation
  • 15. Kaddouri, A, Mazzocchia, C, Tempesti, E, Nomen, R, Sempere, J 1009 Sol-gel processing of copper-chromium catalysts for ester hydrogenation. J Therm Anal 53:533545 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Gobert-Ranchoux, E, Charbonnier, F 1977 Comportement thermique des propionates hydrates de calcium, strontium et barium. J Therm Anal 12:3342 .

  • 17. Kaddouri, A, Mazzocchia, CJ 2002 Thermoanalytic study of some metal propionates synthesised by sol-gel route: a kinetic and thermodynamic study. J Anal Appl Pyrolysis 65:253267 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Ciontea, L, Nasui, M T Petrisor Jr Mos, RB, Gabor, MS, Varga, RA, Petrisor, T 2010 Synthesis, crystal structure and thermal decomposition of [La2(CH3CH2COO)6·(H2O)3]·3.5H2O precursor for high-k La2O3 thin films deposition. Mater Res Bull 45:12031208 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Grivel, JC 2010 Thermal decomposition of lutetium propionate. J Anal Appl Pyrolysis 89:250254 .

  • 20. Sakharova, YG, Bogodukhova, TI, Evtushenko, IY, Loginov, VI 1979 Thermal decomposition of carbamide compounds of thulium, ytterbium and lutetium propionates. Z Neorg Khim 24:323330.

    • Search Google Scholar
    • Export Citation
  • 21. Nadzharyan, K, Mlynskaya, V, Magunov, R 1984 LiC2H5COO–Y(C2H5COO)3–H2O system at 25 °C. Russ J Inorg Chem (Engl Transl) 29:17971799.

    • Search Google Scholar
    • Export Citation
  • 22. Liu, S, Ma, RJ 1997 Synthesis of hydrated lutetium carbonate. Acta Chem Scand 51:893895 .

  • 23. Hussein, GAM, Balboul, BAA 1999 Ytterbium oxide from different precursors: formation and characterization. Thermoanalytical studies. Powder Technol 103:156164 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Hussein, GAM, Mekhemer, GAH, Balboul, BAA 2000 Formation and surface characterization of thulium oxide catalysts. Phys Chem Chem Phys 2:20332038 .

  • 25. Hussein, GAM, Balboul, BAA, Mekhemer, GAH 2000 Holmium oxide from holmium acetate, formation and characterization: thermoanalytical studies. J Anal Appl Pyrolysis 56:263272 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Mahfouz, RM, Al-Shehri, SM, Monshi, MAS, Alhaizan, AI, Abd El-Salam, NM 2007 Isothermal decomposition of γ-irradiated erbium acetate. Radiat Eff Defects Solids 162:95100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Balboul, BAA 2000 Thermal decomposition study of erbium oxalate hexahydrate. Thermochim Acta 351:5560 .

  • 28. Glasner, A, Levy, E, Steinberg, M 1964 Thermal decomposition of ytterbium oxalate. J Inorg Nucl Chem 26:11431149 .

  • 29. Masuda, Y 1983 Thermal decomposition of formates. Part IX. Thermal decomposition of rare earth formate anhydrides. Thermochim Acta 67:271285 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Muraishi, K, Yokobayashi, H, Nagase, K 1991 Systematics on the thermal reactions of lanthanide malonates Ln2(C3H2O4)3·nH2O in the solid state. Thermochim Acta 182:209217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Hites, A, Biemann, K 1972 On the mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. J Am Chem Soc 94:57725777 .

  • 32. Barnes, PA, Stephenson, G, Warrington, SB 1982 The use of TA–GLC–MS as a quantitative specific EGA technique for the investigation of complex thermal decomposition reactions: the thermal decomposition of calcium propanoate. J Therm Anal 25:299311 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Skoršepa, J, Godočíkova, E, Černák, J 2004 Comparison on thermal decomposition of propionate, benzoate and their chloroderivative salts of Zn(II). J Therm Anal Calorim 75:773780 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. El Baydi, M, Poillerat, G, Rehspringer, JL, Gautier, JL, Koenig, JF, Charlier, P 1994 A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J Solid State Chem 109:281288 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. McDevitt, NT, Baun, WL 1964 Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim Acta 20:799808 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Dododzhanov, MA, Komarov, VP, Shaplygin, IS 1986 Thermal decomposition of dysprosium, holmium, erbium and ytterbium abietates. Zh Neorg Khim 31:640642.

    • Search Google Scholar
    • Export Citation
  • 37. Nagashima, K, Wakita, H, Mochizuki, A 1973 The synthesis of crystalline rare earth carbonates. Bull Chem Soc Jpn 46:152156 .

  • 38. Glasner, A, Steinberg, M 1961 Thermal decomposition of the light rare earth oxalates. J Inorg Nucl Chem 22:3948 .

  • 39. Moscardini D'Assunção, L, Giolito, I, Ionashiro, M 1989 Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochim Acta 137:319330 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Sakharova, YG, Bogodukhova, TI, Loginov, VI, Evtushenko, IY 1978 Thermal decomposition of carbamide compounds of terbium, dysprosium, holmium, erbium and yttrium propionates. Z Neorg Khim 23:29532958.

    • Search Google Scholar
    • Export Citation
  • 41. Turcotte, RP, Sawyer, JO, Eyring, L 1969 On the rare earth dioxymonocarbonates and their decomposition. Inorg Chem 8:238246 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)