View More View Less
  • 1 Budapest University of Technology and Economics, Department of Physical Chemistry and Material Science, Műegyetem rkp. 3. H/1, Budapest 1111, Hungary
  • | 2 CSIR Materials Science and Manufacturing, Polymers and Composites, P. O. Box 395, Pretoria 0001, South Africa
  • | 3 Chemical Research Center of the Hungarian Academy of Sciences, Institute of Nanochemistry and Catalysis, Pusztaszeri út 59-67, Budapest 1025, Hungary
  • | 4 Chemical Research Center of the Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry, Pusztaszeri út 59-67, Budapest 1025, Hungary
  • | 5 Chemical Research Center of the Hungarian Academy of Sciences, Institute of Structural Chemistry, Pusztaszeri út 59-67, Budapest 1025, Hungary
  • | 6 CSIR Materials Science and Manufacturing, Polymers & Composites Competence Area, POBox 1124, Summerstrand, Port Elizabeth 6000, South Africa
Restricted access

Abstract

Surface oxyfluorination had been carried out on polypropylene non-woven fabric (PP NWF) samples of different morphologies and pore sizes. The modified surfaces were characterised by Attenuated Total Reflectance Fourier Transform InfraRed (ATR-FTIR)-spectroscopy, FTIR imaging microscopy, X-Ray Photoelectron Spectroscopy (XPS), Electron Spin Resonance (ESR) spectroscopy, Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), dynamic rheometry and Thermo-Gravimetry (TG). ATR-FTIR and XPS techniques revealed the presence of –CF, –CF2, –CHF and –C(O)F groups. The formed –C(O)F groups mostly got hydrolysed to –COOH groups. The C=O groups of alpha-haloester, and the C=C stretching of the formed –CF=C(OH)– groups could also be detected. Long-lived radicals could be detected on the functionalised surfaces as middle-chain peroxy radicals by ESR spectroscopy. SEM micrographs showed slight roughening of the oxyfluorinated surfaces. Oxyfluorination had no significant effect on the crystalline structure and phase composition of the PP NWF samples supported by DSC and XRD measurements. The molecular mass of the samples were unaffected by the oxyfluorination treatment as proved by oscillating rheometry. The surface modification, however, significantly affected the thermal decomposition but not affected the thermo-oxidative decomposition of PP NWFs. Different morphologies and pore sizes of PP NWF samples resulted in reproducibility of the findings, although did not substantially affect surface functionalisation.

  • 1. du Toit, FJ, Sanderson, RD, Engelbrecht, WJ, Wagener, JB 1995 The effect of surface fluorination on the wettability of high density polyethylene. J Fluor Chem 74 1 4348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. du Toit, FJ, Sanderson, RD 1999 Surface fluorination of polypropylene: 1. characterisation of surface properties. J Fluor Chem 98 2 107114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. du Toit, FJ, Sanderson, RD 1999 Surface fluorination of polypropylene: 2. adhesion properties. J Fluor Chem 98 2 115119 .

  • 4. Mohr, JM, Paul, DR, Tam, Y, Mlsna, TE, Lagow, RJ 1991 Surface fluorination of composite membranes. Part II. Characterization of the fluorinated layer. J Membr Sci 55 1–2 149171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Brass, I, Brewis, DM, Sutherland, I, Wiktorowicz, R 1991 The effect of fluorination on adhesion to polyethylene. Int J Adhes Adhes 11 3 150153 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Park, SJ, Song, SY, Shin, JS, Rhee, JM 2005 Effect of surface oxyfluorination on the dyeability of polyethylene film. J Colloid Interface Sci 283 1 190195 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Sanderson, R, du Toit, F, Carstens, P, Wagener, J 1994 Fluorination rates of polyolefins as a function of structure and gas atmosphere. J Therm Anal Calorim 41 2 563581 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Lagow RJ , Margrave JL. Direct fluorination: a “new” approach to fluorine chemistry. progress in inorganic chemistry. Hoboken: John Wiley & Sons, Inc; 2007.

    • Search Google Scholar
    • Export Citation
  • 9. Shimada, J, Hoshino, M 1975 Surface fluorination of transparent polymer film. J Appl Polym Sci 19 5 14391448 .

  • 10. Hayes, LJ 1976 Surface energy of fluorinated surfaces. J Fluor Chem 8 1 6988 .

  • 11. Leroux, JD, Paul, DR, Arendt, MF, Yuan, Y, Cabasso, I 1994 Surface fluorination of poly(phenylene oxide) composite membranes. 2. Characterization of the fluorinated layer. J Membr Sci 90 1–2 3753 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Volkmann, T, Widdecke, H 1989 Oxifluorination of polyethylene. Kunstst Ger Plast 79 8 743744.

  • 13. Jeong, E, Bae, T-S, Yun, S-M, Woo, S-W, Lee, Y-S 2011 Surface characteristics of low-density polyethylene films modified by oxyfluorination-assisted graft polymerization. Colloids Surf A 373 1–3 3641 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. du Toit FJ . Surface modification of polymers using elemental flourine. Ph.D. Thesis, University of Stellenbosch; 1995.

  • 15. Kharitonov, AP 2000 Practical applications of the direct fluorination of polymers. J Fluor Chem 103 2 123127 .

  • 16. Kharitonov, AP, Taege, R, Ferrier, G, Teplyakov, VV, Syrtsova, DA, Koops, G-H 2005 Direct fluorination—useful tool to enhance commercial properties of polymer articles. J Fluor Chem 126 2 251263 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Tressaud, A, Durand, E, Labrugère, C, Kharitonov, AP, Kharitonova, LN 2007 Modification of surface properties of carbon-based and polymeric materials through fluorination routes: from fundamental research to industrial applications. J Fluor Chem 128 4 378391 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Kharitonov, AP, Kharitonova, LN 2009 Surface modification of polymers by direct fluorination: a convenient approach to improve commercial properties of polymeric articles. Pure Appl Chem 81 3 451471 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Boguslavsky L . High efficiency particulate air (HEPA) Filters from polyester and polypropylene -Nonwovens,. International Conference FILTREX 2010; October; Cologne, Germany 2010.

    • Search Google Scholar
    • Export Citation
  • 20. Socrates, G 2001 Infrared and Raman characteristic group frequencies : tables and charts 3 ed. Chichester Wiley.

  • 21. Kharitonov, AP 2008 Direct fluorination of polymers—from fundamental research to industrial applications. Prog Org Coat 61 2–4 192204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Mihaly, J, Sterkel, S, Ortner, HM, Kocsis, L, Hajba, L, Furdyga, E. et al. 2006 FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croatica Chemica Acta. 79:497501.

    • Search Google Scholar
    • Export Citation
  • 23. Beamson, G, Briggs, D 1992 High resolution XPS of organic polymers. The scienta ESCA300 database Wiley Chichester.

  • 24. Schlick, S, Mcgarvey, BR 1983 Motion of midchain peroxy-radicals in poly(tetrafluoroethylene). J Phys Chem 87 2 352353 .

  • 25. Genovese, A, Shanks, R 2004 Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal Calorim 75 1 233248 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Horvath, Z, Sajo, IE, Stoll, K, Menyhard, A, Varga, J 2010 The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. eXPRESS Polym Lett 4 2 101114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Nurul Huda, M, Dragaun, H, Bauer, S, Muschik, H, Skalicky, P 1985 A study of the crystallinity index of polypropylene fibres. Colloid Polym Sci 263 9 730737 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Monasse, B, Haudin, JM 1985 Growth transition and morphology change in polypropylene. Colloid Polym Sci 263 10 822831 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 1 0 0
Jun 2021 5 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 3 0 0
Oct 2021 0 0 0