View More View Less
  • 1 Institute of Chemical Technology and Engineering, Poznan University of Technology, Sklodowskiej-Curie 1, 60-965, Poznan, Poland
Restricted access

Abstract

Mercerization process is very significant because the alkali treatment facilitates reactivity of lignocellulosic fillers, thus allowing better response to chemical modification. In the present study, the effect of mercerization of pine wood on the nucleation ability of polypropylene was investigated by means of differential scanning calorimetry. We discovered that for the composites with wood containing cellulose II, the decrease in the crystal conversion of the polymer matrix and increase in the half-time of crystallization values are significant. It can be concluded that the amount of cellulose II formed upon alkalization of lignocellulosic fillers determines their nucleation ability. To evaluate the transcrystalline effects caused by various woods, which were untreated or treated with sodium hydroxide, the polarized optical microscopy was also performed. The nucleation of polypropylene on the surface of wood was investigated by induction time measurement. It was found that surfaces of the unmodified wood generate epitaxial nucleation, whereas the mercerized wood generates nonepitaxial nucleation. The differences in the type of nucleation suggest that the effectiveness of formation of transcrystalline structures depends on the contribution of cellulose I and cellulose II. Moreover, the presence of epitaxy is not necessary for the appearance of transcrystalline structures. The results showed that the transcrystalline structures appeared in each system, even with wood containing significant contribution of cellulose II. The only difference noted was the change in the nucleation abilities of the wood surface. Results of this study imply the necessity of quantitative determination of the contributions of cellulose I and cellulose II, whose presence determine the type of nucleation and nucleation ability of the filler surface.

  • 1. Renner, K, Moczo, J, Pukanszky, B 2009 Deformation and failure of PP composites reinforced with lignocellulosic fibers: effect of inherent strength of the particles. Compos Sci Technol 69:16531659 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Bledzki, AK, Letman, M, Viksne, A, Rence, L 2005 A comparison of compounding process and wood type for wood fibre-PP composites. Composites 36:789797 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Nourbakhsh, A, Ashori, A 2010 Wood plastic composites from agro-waste materials: analysis of mechanical properties. Bioresour Technol 101:25252528 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Kim, JW, Harper, DP, Taylor, AM 2009 Effect of wood species on the mechanical and thermal properties of wood-plastic composites. J Appl Polym Sci 112:13781385 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Oksman, K, Mathew, AP, Langstrom, R, Nystrom, B, Joseph, K 2009 The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:18471853 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Nunez, AJ, Sturm, PC, Kenny, JM, Aranguren, MI, Marcovich, NE, Reboredo, MM 2003 Mechanical characterization of polypropylene-wood flour composites. J Appl Polym Sci 88:14201428 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Awal, A, Ghosh, SB, Sain, M 2010 Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim 99:695701 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Zafeiropoulos, NE, Williams, DR, Baillie, CA, Matthews, FL 2002 Engineering and characterization of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A 33:10831093 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Danyadi, L, Moczo, J, Pukanszky, B 2010 Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A 41:199206 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Lu, JZ, Wu, Q, McNabb, HS 2000 Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32:88104.

    • Search Google Scholar
    • Export Citation
  • 11. Hill CAS . Wood modification: chemical, thermal and other processes. 1st ed. New York: Wiley; 2006.

  • 12. Rowell RM . Solid wood processing/chemical modification. In: Burley J, Evans J, Youngquist J, editors. Encyclopedia of forest sciences. Oxford: Elsevier; 2004.

    • Search Google Scholar
    • Export Citation
  • 13. Wertz, JL, Bedue, O, Mercier, JP 2010 Cellulose science and technology 1 Taylor and Francis Group Boca Raton.

  • 14. Mwaikambo, LY, Ansell, M 2002 Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. J Appl Polym Sci 84:22222234 .

  • 15. Hon, DNS 1996 Chemical modification of lignocellulosic materials 1 Marcel Dekker New York.

  • 16. Pan, MZ, Zhou, DG, Deng, J, Zhang, SY 2009 Preparation and properties of wheat straw fiber-polypropylene composites. I. Investigation of surface treatments on the wheat straw fiber. J Appl Polym Sci 114:30493056 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Bledzki, AK, Gassan, J 1999 Composites reinforced with cellulose based fibres. Progr Polym Sci 24:221274 .

  • 18. Wang, HM. et al. 2003 Removing pectin and lignin during chemical processing of hemp for textile applications. Textile Res J 73:664669 .

  • 19. Weyenberg, I, Truong, TC, Vangrimde, B, Verpoest, I 2006 Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A 37:13681376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Borysiak, S, Doczekalska, B 2008 Research into the mercerization process of beech wood using the WAXS method. Fibres Text East Eur 16:101103.

    • Search Google Scholar
    • Export Citation
  • 21. Borysiak, S, Garbarczyk, J 2003 Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerization. Fibres Text East Eur 11:104106.

    • Search Google Scholar
    • Export Citation
  • 22. Kaith, BS, Singha, AS, Kumar, S, Kalia, S 2008 Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. Int J Polym Mater 57:5472 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Quan, H, Li, ZM, Yang, MB, Huang, R 2005 On transcrystallinity in semi-crystalline polymer composites. Compos Sci Technol 65:9991021 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Varga, J, Karger-Kocsis, J 1996 Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Polym Phys 34:657670 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Zafeiropoulos, NE, Baillie, CA, Matthews, FL 2001 A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A 32:525543 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Son, SJ, Lee, YM, Im, SS 2000 Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulase. J Mater Sci 35:57675778 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Gray, DG 1974 Polypropylene transcrystallization at the surface of cellulose fibers. Polym Lett Ed 12:50915.

  • 28. Borysiak, S, Doczekalska, B 2009 The influence of chemical modification of wood on its nucleation ability in polypropylene composites. Polimery 54:4148.

    • Search Google Scholar
    • Export Citation
  • 29. Quillin, DT, Caulfield, DF, Koutsky, JA 1993 Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. J Appl Polym Sci 50:11871194 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Joseph, PV, Joseph, K, Thomas, S, Pillai, CKS, Prasad, VS, Groeninckx, G, Sarkissova, M 2003 The thermal and crystallization studies of short sisal fibre reinforced polypropylene composites. Compos Part A 34:253266 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Lenes, M, Gregersen, QW 2006 Effect of surface chemistry and topography of sulphite fibres on the transcrystallinity of polypropylene. Cellulose 13:345355 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Muchova, M, Lednicky, F 1996 Investigation of heterogeneous nucleation by the induction time of crystallization: 2. Comparison of the theory and experimental measurement. Polymer 37:30373043 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Wittman, JC, Lotz, B 1990 Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909948 .

  • 34. Wunderlich B . Macromolecular physics. 1st ed. New York: Academic Press; 1976.

  • 35. Muchova, M, Lednicky, F 1996 Investigation of heterogeneous nucleation by the induction time of crystallization: 1. Theory of induction time. Polymer 37:30313036 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Felix, JM, Gatenholm, P 1994 Effect of trancrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci 29:30433049 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Mucha, M, Krolikowski, Z 2003 Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim 74:549557 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Hindeleh, AM, Johnson, DJ 1971 The resolution of multipeak data in fibre science. J Phys Appl Phys 4:259263.

  • 39. Rabiej, S 1991 A comparison of two X-ray diffraction procedures for crystallinity determination. Eur Polym J 27:947954 .

  • 40. Lee, SY, Chun, J, Doh, GH, Kang, IA 2009 Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. J Compos Mater 43:16391648 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Ishikawa, A, Okano, T, Sugiyama, J 1997 Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, III and IV. Polymer 38:463468 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Gwon, JG, Lee, SY, Chun, SJ, Doh, GH, Kim, JH 2010 Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean J Chem Eng 27:651657 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Dinand, E, Vignon, M, Chanzy, H, Heux, L 2002 Mercerization of primary wall cellulose and its implication of cellulose I → cellulose II. Cellulose 9:718 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Zugenmaier, P 2001 Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:13411417 .

  • 45. Borysiak, S, Doczekalska, B 2006 Influence of chemical modification of wood on the crystallisation of polypropylene. Holz Roh Werkst 64:451454 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Borysiak, S 2007 Determination of nucleation ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim 88:455462 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Borysiak, S 2010 The supermolecular structure of polypropylene/wood composites. I) The influence of processing parameters and chemical treatment of filler. Polym Bull 64:275290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Bouza, R, Marco, C, Ellis, G, Martin, Z, Gomez, MA, Barral, L 2008 Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim 94:119127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Ng, ZS, Simon, LC, Elkamel, A 2009 Renewable agricultural fibers as reinforcing fillers in plastics. Prediction of thermal properties. J Therm Anal Calorim 96:8590 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Bledzki, AK, Reihmane, S, Gassan, J 1998 Thermoplastics reinforced with wood filler: a literature review. J Polym Plast Technol Eng 37:451468 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Joseph, PV, Kuruvilla, J, Sabu, T 1999 Effect of processing variables on the mechanical properties of sisal fiber reinforced polypropylene composite. Compos Sci Technol 59:16251640 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Marconich, NE, Aranguren, MI, Reboredo, MM 2001 Modified woodflour as thermoset fillers. Part I. Effect of the chemical modification and percentage of filler on the mechanical properties. Polymer 42:815825 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Albano, C, Ichazo, M, Gonzalez, J, Delgado, M, Poleo, R 2001 Effects of filler treatments on the mechanical and morphological behavior PP + wood flour and PP + sisal fiber. Mat Res Innovat 4:284293 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Pimenta, MTB, Carvalho, AJF, Vilaseca, F, Gironès, J, Lopez, JP, Mutjé, P, Curvelo, AAS 2008 Soda treated Sisal/polypropylene composites. J Polym Environ 16:3539 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Ichazo, MN, Albano, C, Gonzalez, J, Perera, R, Candal, MV 2001 Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207214 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56. Raj, RG, Kokta, BV, Groluleau, G, Daneault, C 1990 The influence of coupling agents on mechanical properties of composites containing cellulosic fillers. Polym Plat Technol Eng 29:339353 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 3 0 0
Sep 2021 4 0 0
Oct 2021 4 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0