View More View Less
  • 1 Silesian University of Technology, Konarskiego 18, 44-101, Gliwice, Poland
  • | 2 Bialystok University of Technology, ul. Wiejska 45C, 15-351, Białystok, Poland
Restricted access

Abstract

Thermogravimetric studies provide the basis for qualification of materials and suitability of biomass fuels and fuels formed from waste to convert them into fuel gas generated in the generator process. The paper presents the results of the analysis of thermal decomposition (thermogravimetric research) of fuel from waste, sewage sludge and wastes from the agro-food: potato pulp and rapeseed meal. Studies have shown how some biofuels and fuel formed from waste reach the semi-coke and coke structure, which is important later, in modeling industry degassing process. The most effective seems to be using rapeseed meal in generator process, since the thermal decomposition occurs in the form of transformation in the temperature range 200–500 °C. On the basis of quantity analysis of gaseous transformation products from the above mentioned transformations, the calorific value of after process gases has been calculated. The highest calorific value is represented by a gas resulting from rapeseed meal pyrolysis ∼10,040 kJ/Nm3. The solid residue obtained by dry decomposition of potato pulp has the highest energy value when compared with products from other fuels.

  • 1. Kök, MV 2001 An investigation into the combustion curves of lignites. J Therm Anal Calorim 64:13191323 .

  • 2. Kök, MV 2007 Non-isothermal DSC and TG/DTG analysis of the combustion of silopi asphaltites. J Therm Anal Calorim 88 3 663668 .

  • 3. Aylón, E, Callèn, MS, López, JM, Mastral, AM, Murillo, R, Navarro, MV, Stelmach, S 2005 Assessment of tire devolatilization kinetics. J Anal Appl Pyrol 74:259 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Gonzàlez, JF, Encinar, JM, Canito, JL, Rodrìguez, JJ 2001 Pyrolysis of automobile tyre waste. Influence of operating variables and kinetic study. J Anal Appl Pyrol 58-59:667 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Williams, PT, Besler, S 1995 Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel 74:12771283 .

  • 6. Sułkowski, WW, Danch, A, Moczyński, M, Radoń, A, Sułkowska, A, Borek, J 2004 Thermogravimetric study of rubber waste-polyurethane composites. J Therm Anal Calorim 78:905921.

    • Search Google Scholar
    • Export Citation
  • 7. Rybiński, P, Janowska, G, Kucharska-Jastrząbek, A, Pająk, A, Wójcik, I, Wesołek, D, Bujnowicz, K 2010 Flammability of vulcanizates of diene rubbers. J Therm Anal Calorim.

    • Search Google Scholar
    • Export Citation
  • 8. Galvagno, S, Casu, S, Martino, M E Di Palma Portofino, S 2007 Thermal and kinetic study of tyre waste pyrolysis via TG–FTIR–MS analysis. J Therm Anal Calorim 88 2 507514 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Dispenza, C, Spadaro, G 2000 Cure kinetics of a tetrafunctional rubber modified epoxy-amine system. J Therm Anal Calorim 61:579587 .

  • 10. Molto, J, Font, R, Conesa, J 2007 Kinetic model of the decomposition of a PET fibre cloth in an inert and air environment. J Anal Appl Pyrol 79:289296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Burlett, DI 2004 Thermal techniques to study complex elastomer/filler systems. J Therm Anal Calorim 75:531544 .

  • 12. Benavides, R, Castillo, BM, Castaneda, AO, Lopez, GM, Arias, G 2001 Different thermo-oxidative degradation routes in poly(vinyl chloride). Polym Degrad Stab 73:417423 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. G Di Nola W de Jong Spliethoff, H 2010 TG–FTIR characterisation of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Process Technol 91:103115 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Stolarek, P, Ledakowicz, S 2001 Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Water Sci Technol 44 10 333339.

    • Search Google Scholar
    • Export Citation
  • 15. Font, R, Fullana, A, Conesa, JA, Lavador, F 2001 Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrolysis 58:927941 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Gomez-Rico, MF, Font, R, Fullana, A, Martin-Gullon, I 2005 Thermogravimetric study of different sewage sludges and their relationship with the nitrogen content. J Anal Appl Pyrolysis 74:421428 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Shen, L, Zhang, DK 2003 An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed. Fuel 82 4 465472 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Yang, H, Yan, R, Chen, H, Lee, HD, Liang, DT, Zheng, C 2006 In-depth investigation of biomass pyrolysis based on three major components:hemicellulose, cellulose and lignin. Energy Fuels 20 1 388393 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Arenillas, A, Pevida, C, Rubiera, F, Garcia, R, Pis, JJ 2004 Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal. J Anal Appl Pyrolysis 71 2 747763 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Fang, MX, Shen, DK, Li, YX, Yu, CJ, Luo, ZY, Cen, KF 2006 Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG–FTIR analysis. J Anal Appl Pyrolysis 77 1 2227 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Otero, M, Diez, C, Calvo, LF, Garcia, AI, Moran, A 2002 Analysis of the co-combustion of sewage sludge and coal by TG–MS. Biomass Bioenergy 22 4 319329 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Karayildirim, T, Yanik, J, Yuksel, M, Bockhorn, H 2006 Characterisation of products from pyrolysis of waste sludges. Fuel 85:14981508 .

  • 23. Shao, J, Yan, R, Chen, H, Wang, B, Lee, DH, Liang, DT 2008 Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuels 22:3845 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Heikkinen, J, Spliethoff, H 2003 Waste mixture composition by thermogravimetric analysis. J Therm Anal Calorim 72:10311039 .

  • 25. Yang, Y, Tan, L, Jin, S, Lin, Y, Yang, H 2011 Catalytic pyrolysis of tobacco rob: kinetic study and fuel gas produced. Bioresour Technol 102:1102711033 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Cheng, G, Zhang, L, He, P, Yan, F, Bo Xiao, B, Tao Xu, T, Jiang, Ch, Zhang, Y, Guo, D 2011 Pyrolysis of ramie residue: kinetic study and fuel gas produced in a cyclone furnace. Bioresour Technol 102:34513456 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Cheng, G, Zhang, L, He, P, Yan, F, Xiao, B, Xu, T, Jiang, Ch, Zhang, Y, Guo, D 2011 Pyrolysis of ramie residue: kinetic study and fuel gas produced in a cyclone furnace. Bioresour Technol 102:34513456 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Hwang, IH, Matsuto, T, Tanaka, N, Sasaki, Y, Tanaami, K 2007 Characterization of char derived from various types of solid waste from the standpoint of fuel recovery and pretreatment before landfilling. Waste Manag (Oxford) 27:11551166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Kantarelis, E, Zabaniotou, A 2009 Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture. Bioresour Technol 100:942947 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Karayildirim, T, Yanik, J, Yuksel, M, Bockhorn, H 2006 Characterisation of products from pyrolysis of waste sludges. Fuel 85:14981508 .

  • 31. Avenell, ChS, Sainz-Diaz, CI, Griffitchs, AJ 1996 Solid waste pyrolysis in pilot-scale batch pyrolyser. Fuel 75:11671174 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0
Nov 2021 3 0 0
Dec 2021 0 0 0