View More View Less
  • 1 Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 107, 1113, Sofia, Bulgaria
  • | 2 Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113, Sofia, Bulgaria
  • | 3 European Polytechnical University, 23 St. St. Kiril i Metodiy Str. 23, 2300, Pernik, Bulgaria
  • | 4 University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Str, 1756, Sofia, Bulgaria
Restricted access

Abstract

Self-compacting cement mortars and concretes are characterized with an excellent workability and with high early strengths, which makes them suitable for elements in pre-cast concrete. Both the dense structure and the non-defected surface of self-compacting mixes are achieved by the incorporation of relatively large amounts of fine mineral additives and use of polycarboxylate admixtures. All these advantages determine the great potential for manufacturing of architectural elements and details. However, there exist many features in the structure-formation and the hardening of these systems. The authors investigate in this study the evolution of the process of curing and the crystal formation up to the 120th days of water-curing. Moreover, the effects of replacement of 10 wt% white cement with natural zeolite are studied. Special attention is paid to the thermal analysis through which one determines the effects of dehydration of the new-formed crystal hydrates, de-carbonization of carbonate-containing phases, and zeolite incorporation. Differences in the thermal behaviour of self-compacting mortars are compared with two types of referent samples. The thermal experiments were complemented with physical–mechanical and structural measurements, including mercury intrusion porosimetry, powder X-ray diffraction and scanning electron microscopy. Experiments and analysis, both determining the development of the microstructure, indicate the formation of a dense structure of white self-compacting mortars. This is achieved at the early age impeding the growth of new crystals. The incorporation of zeolite increases the early strengths of samples, thus making the structure denser, and completely blocking the water permeability. As the zeolite is a soft and ductile mineral, it can be expected that the volume deformations of microstructure of the zeolite-containing mortars, are reduced.

  • 1. Forde MC , editors. ICE manual of construction. Thomas Telford Publishing; 2009. p. 928.

  • 2. Corradi, M 2006 Concrete for the construction industry of tomorrow MS Konsta-Gdoutos eds. Measuring, monitoring and modeling concrete properties Springer Amsterdam 429440 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Sukumar, B, Nagamani, K Srinivasa Raghavan 2008 Evaluation of strength at early ages of self-compacting concrete with high volume fly ash. Constr Build Mater 22:13941401 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Uysal, M, Yilmaz, K 2011 Effect of mineral admixtures on properties of self-compacting concrete. Cement Concr Compos 33:771776 .

  • 5. Parra, C, Valcuende, M, Gómez, F 2011 Splitting tensile strength and modulus of elasticity of self-compacting concrete. Constr Build Mater 25:201207 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. López, A, Tobes, JM, Giaccio, G, Zerbino, R 2009 Advantages of mortar-based design for coloured self-compacting concrete. Cement Concr Compos 31:754761 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Stoyanov V . Investigation of properties of decorative mortars besed on design of experiments In: Proceedings of the international conference on civil engineering design and construction. (Eurocodes - Science and Practice) DCB; 2010. p. 0911.

    • Search Google Scholar
    • Export Citation
  • 8. Stoyanov V , Kolentzov S. Effects of fiber content on the properties of high-fluidity mortars for decorative applications. In: Barovsky N, editors. Proceedings of the 12th international conference on mechanics and technology of composite materials, Varna; 2009. p. 130136.

    • Search Google Scholar
    • Export Citation
  • 9. Ramachandran, VS 1972 Elucidation of the role of chemical admixtures in hydrating cements by DTA technique. Thermochim Acta 4:343366 .

  • 10. Roszczynialski, W 2002 Determination of pozzolanic activity of materials by thermal analysis. J Therm Anal Calorim 70:387392 .

  • 11. Pacewska, B, Blonkowski, G, Wilińska, I 2008 Studies on the pozzolanic and hydraulic properties of fly ashes in model systems. J Therm Anal Calorim 94:469476 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ashraf, M, Naeem Khan, A Qasair Ali Mirza, J, Goyal, A, Anwar, AM 2009 Physico-chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Constr Build Mater 23:22072213 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Martínez-Ramírez, S, Frías, M 2009 The effect of curing temperature on white cement hydration. Constr Build Mater 23 3 13441348 .

  • 14. Tsivilis, S, Kakali, G, Chaniotakis, E, Souvaridou, A 1998 A study on the hydration of Portland limestone cement by means of TG. J Therm Anal Calorim 52:863870 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Péra, J, Husson, S, Guilhot, B 1999 Influence of finely ground limestone on cement hydration. Cement Concr Compos 21:99105 .

  • 16. Darweesh, HHM 2004 Limestone as an accelerator and filler in limestone-substituted alumina cement. Ceram Int 30 3 145150 .

  • 17. Zhang, Y, Zhang, X 2008 Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Constr Build Mater 22 8 16341642 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Janotka I , Krajči L’. Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. J Therm Anal Calorim. 2008;94: 714.

    • Search Google Scholar
    • Export Citation
  • 19. Kontori, E, Perraki, T, Tsivilis, S, Kakali, G 2009 Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J Therm Anal Calorim 96:993998 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Perraki, T, Kontori, E, Tsivilis, S, Kakali, G 2010 The effect of zeolite on the properties and hydration of blended cements. Cement Concr Compos 32:128133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Snellings, R, Mertens, G, Elsen, J 2010 Calorimetric evolution of the early pozzolanic reaction of natural zeolites. J Therm Anal Calorim 101:97105 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Ye, G, Liu, X G De Schutter Taerwe, L, Vandevelde, P 2007 Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature. Cem Concr Res 37:978987 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Bakhtiyari, S, Allahverdi, A, Rais-Ghasemi, M, Zarrabi, BA, Parhizkar, T 2011 Self-compacting concrete containing different powders at elevated temperatures—mechanical properties and changes in the phase composition of the paste. Thermochim Acta 514:7481 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Fares, H, Remond, S, Noumowe, A, Cousture, A 2010 High temperature behaviour of self-consolidating concrete: microstructure and physicochemical properties. Cem Concr Res 40:488496 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. EN 197-1:2011. Cement: part 1: composition, specifications and conformity criteria for common cements.

  • 26. EFNARC. Specification and guidelines for self-compacting concrete. European federation for specialist construction chemicals and concrete systems, Norfolk (English ed.). The European Guidelines for Self Compacting Concrete; 2005.

    • Search Google Scholar
    • Export Citation
  • 27. EN 196-1:2005. Methods of testing cement—part 1: determination of strength.

  • 28. ASTM C642. 06 standard test method for density, absorption, and voids in hardened concrete.

  • 29. Richardson, IG 2008 The calcium silicate hydrates. Cem Concr Res 38:137158 .

  • 30. Taylor, R, Richardson, IG, Brydson, RMD 2010 Composition and microstructure of 20-year-old ordinary Portland cement–ground granulated blast-furnace slag blends containing 0 to 100 % slag. Cem Concr Res 40:971983 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Petkova, V, Serafimova, E, Petrova, N, Pelovski, Y 2011 Thermochemistry of triboactivated natural and NH4-exchanged clinoptilolite mixed with Tunisian apatite. J Therm Anal Calorim 105:535544 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Matschei, T, Lothenbach, B, Glasser, FP 2007 The role of calcium carbonate in cement hydration. Cem Concr Res 37:551558 .

  • 33. Taylor, HFW 1997 Cement chemistry 2d Thomas Telford Publishing London .

  • 34. Aguilera, J, Martınez-Ramırez, S, Pajares-Colomo, I, Blanco-Varela, MT 2003 Formation of thaumasite in carbonated mortars. Cement Concr Compos 25:991996 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Barnett, SJ, Adam, CD, Jackson, ARW 2000 Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12⋅26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O. J Mater Sci 35:41094114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Perraki, Th, Kakali, G, Kontori, E 2005 Characterization and pozzolanic activity of thermally treated zeolite. J Therm Anal Calorim 82:109113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Perraki, Th, Kakali, G, Kontoleon, F 2003 The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater 61:205212 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Famy, C, Brough, AR, Taylor, HFW 2003 The C–S–H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C–S–H, AFm and Aft phase compositions. Cem Concr Res 33:13891398 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Balonis, M, Glasser, FP 2009 The density of cement phases. Cem Concr Res 39:733739 .

  • 40. Gruskovnjak, A, Lothenbach, B, Winnefeld, F, Figi, R, Ko, S-C, Adler, M, Mäder, U 2008 Hydration mechanisms of super sulphated slag cement. Cem Concr Res 38:983992 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Drábik, M, Tunega, D, Balkovic, S, Fajnor, 2006 Computer simulations of hydrogen bonds for better understanding of the data of thermal analysis of thaumasite. J Therm Anal Calorim 85 2 469475 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Chaipanich, A, Nochaiya, Th 2010 Thermal analysis and microstructure of Portland cement-fly ash-silica fume pastes. J Therm Anal Calorim 99:487493 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Adams, J, Dollimore, D, Griffiths, DL 1998 Thermal analytical investigation of unaltered Ca(OH)2 in dated mortars and plasters. Thermochim Acta 324:6776 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Dollimore, D, Gupta, JD S Lerdkanchanaporn Sr Nippani, A 2000 Thermal analysis study of recycled portland cement concrete (RPCC) aggregates. Thermochim Acta 357–358:3140 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Pacewska, B, Wiliñska, Iw, Bukowska, M 2009 Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim 97 1 6166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Vessalas, K, Thomas, PS, Ray, AS, Guerbois, J-P, Joyce, P, Haggman, J 2009 Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. J Therm Anal Calorim 97 1 7176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Jo, Dwecka, Mauricio Buchler, P, Coelho, ACV, Cartledge, FK 2000 Hydration of a Portland cement blended with calcium carbonate. Thermochim Acta 346:105113 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 6 0 0
Feb 2021 6 1 0
Mar 2021 8 1 0
Apr 2021 5 0 0
May 2021 1 0 0
Jun 2021 7 0 0
Jul 2021 0 0 0