Authors:
A. Dorigato Department of Materials Engineering and Industrial Technologies (DIMTI), University of Trento, via Mesiano 77, 38123, Trento, Italy

Search for other papers by A. Dorigato in
Current site
Google Scholar
PubMed
Close
,
A. Pegoretti Department of Materials Engineering and Industrial Technologies (DIMTI), University of Trento, via Mesiano 77, 38123, Trento, Italy

Search for other papers by A. Pegoretti in
Current site
Google Scholar
PubMed
Close
, and
A. Frache Department of Materials Science and Chemical Engineering (DISMIC), Polytechnic of Turin, Via T. Michel 5, 15100, Alessandria, Italy

Search for other papers by A. Frache in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-density polyethylene-based nanocomposites were prepared through a melt compounding process by using surface functionalized fumed silica nanoparticles in various amounts, in order to investigate their capability to improve both mechanical properties and resistance to thermal degradation. The fine dispersion of silica aggregates led to noticeable improvements of both the elastic modulus and of the stress at yield proportionally to the filler content, while the tensile properties at break were not impaired even at elevated filler content. Thermogravimetric analysis showed that the selected nanoparticles were extremely effective both in increasing the decomposition temperature and in decreasing the mass loss rate, even at relatively low filler loadings. The formation of a char enriched layer, limiting the diffusion of the oxygen through the nanofilled samples, was responsible of noticeable improvements of the limiting oxygen index, especially at elevated silica loadings. In contrast with commonly reported literature results, cone calorimeter tests also revealed the efficacy of functionalized nanoparticles in delaying the time to ignition and in decreasing the heat release rate values. Therefore, the addition of functionalized fumed silica nanoparticles could represent an effective way to enhance the flammability properties of polyolefin matrices even at low filler concentrations.

  • 1. Bondioli, F, Dorigato, A, Fabbri, P, Messori, M, Pegoretti, A 2008 High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448457 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Bondioli, F, Dorigato, A, Fabbri, P, Messori, M, Pegoretti, A 2009 Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. J Appl Polym Sci 112:10451055 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Mandalia, T, Bargaya, F 2005 Organo-clay mineral-melted polyolefin nanocomposites. Effect of surfactant/CEC ratio. J Phys Chem Solids 67:836845 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Yuan, Q, Misra, RDK 2006 Impact fracture behaviour of clay-reinforced polypropylene nanocomposites. Polymer 47:44214433 .

  • 5. Zhang, Z, Yang, JL, Friedrich, K 2004 Creep resistant polymeric nanocomposites. Polymer 45:34813485 .

  • 6. Zhao, C, Qin, H, Gong, F, Feng, M, Zhang, S, Yang, M 2005 Mechanical, thermal and flammability properties of polyethylen/clay nanocomposites. Polym Degrad Stab 87:183189 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Zhang, MQ, Rong, MZ, Zhang, HB, Friedrich, K 2003 Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43 2 490500 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Zhang, J, Jiang, DD, Wilkie, CA 2005 Polyethylene and polypropylene nanocomposites based upon an oligomerically modified clay. Thermochim Acta 430:107113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Pegoretti, A, Dorigato, A, Penati, A 2007 Tensile mechanical response of polyethylene–clay nanocomposites. Express Pol Lett 1 3 123131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Starkova, O, Yang, JL, Zhang, Z 2007 Application of time-stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos Sci Technol 67:2691 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Choi, WJ, Kim, SH, Kim, YJ, Kim, SC 2004 Synthesis of chain-extended organifier and properties of polyurethane–clay nanocomposites. Polymer 45 17 60456057 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Gorrasi, M, Tortora, M, Vittoria, G 2005 Synthesis and physical properties of layered silicates/polyurethane nanocomposites. J Polym Sci B 43 18 24542467 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Tortora, M, Gorrasi, M, Vittoria, G, Galli, V, Ritrovati, S, Chiellini, E 2002 Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer 43 23 61476157 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Zhang, M, Sundararaj, U 2006 Thermal, rheological, and mechanical behaviors of LLDPE/PEMA/clay nanocomposites: effect of interaction between polymer, compatibilizer, and nanofiller. Macromol Mater Eng 291:697706 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ou, CF, Hsu, MC 2007 Preparation and properties of cycloolefin copolymer/silica hybrids. J Appl Polym Sci 104:25422548 .

  • 16. Ou, CF, Hsu, MC 2007 Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. J Polym Res 14:373378 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Kolarik, J, Fambri, L, Pegoretti, A, Penati, A, Goberti, P 2002 Prediction of the creep of heterogeneous polymer blends: rubber-toughened polypropylene/poly(styrene-co-acrylonitrile). Polym Eng Sci 42 1 161169 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Kolarik, J, Pegoretti, A, Fambri, L, Penati, A 2003 Non linear long term tensile creep of polypropylene/cycloolefin copolymer blends with fibrous structure. Macromol Mater Eng 288:629641 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Pegoretti, A 2009 Creep and fatigue behaviour of polymer nanocomposites J Karger-Kocsis S Fakirov eds. Nano- and micromechanics of polymer blends and composites Carl Hanser Verlag GmbH & Co. KG Munich 301339.

    • Search Google Scholar
    • Export Citation
  • 20. Bergaya, F, Mandalia, T, Amigouet, P 2005 A brief survey on CLAYPEN and Nanocomposites based on unmodified PE and organo-pillared clays. Colloid Polym Sci 283:773782 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Su, S, Jiang, DD, Wilkie, CA 2004 Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically modified clay. Polym Degrad Stab 83:321331 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Wang, KH, Xu, M, Choi, YS, Chung, IJ 2001 Effect of aspect ratio on melt extensional process of maleated polyethylene/clay nanocomposites. Polym Bull 46:499595 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Lu, H, Hu, Y, Xiao, J, Kong, Q, Chen, Z, Fan, W 2005 The influence of irradiation on morphology evolution and flammability properties of maleated polyethylene/clay nanocomposite. Mater Lett 59:648651 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Ranade, A, Nayak, K, Fairbrother, D NA D' Souza 2005 Maleated and non maleated polyethylene-montmorillonite layered silicate blown films: creep, dispersion and crystallinity. Polymer 46:73237333 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Costantino, U, Gallipoli, A, Nocchetti, M, Camino, G, Bellucci, F, Frache, A 2005 New nano-composites constituted of polyethylene and organically modified ZnAl-hydrotalcites. Polym Degrad Stab 90:586590 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Costantino, U, Montanari, F, Nocchetti, M, Canepa, F, Frache, A 2007 Preparation and characterization of hydrotalcite/carboxy-adamantane intercalation compounds as fillers of polymeric nanocomposites. J Mater Chem 17:10791086 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Gilman, JW 1999 Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15 1–2 3149 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Kiliaris, P, Papaspyrides, CD 2010 Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902958 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Dorigato, A, Pegoretti, A, Penati, A 2010 Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling. Express Pol Lett 4 2 115129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Dorigato A , Dzenis Y, Pegoretti A. Nanofiller aggregation as reinforcing mechanism in nanocomposites. Procedia Eng. 2011;10: 894899.

    • Search Google Scholar
    • Export Citation
  • 31. Dorigato, A, Fambri, L, Pegoretti, A, Slouf, M, Kolarik, J 2011 Cycloolefin copolymer (COC)/fumed silica nanocomposites. J Appl Polym Sci 119:33933402 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Dorigato, A, Pegoretti, A 2010 Tensile creep behaviour of polymethylpentene/silica nanocomposites. Polym Int 59:719724.

  • 33. Dorigato, A, Pegoretti, A, Kolarik, J 2010 Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: time-strain superposition and creep prediction. Polym Compos 31:19471955 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kontou, E, Niaounakis, M 2006 Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 47:12671280 .

  • 35. Barus, S, Zanetti, M, Lazzari, M, Costa, L 2009 Preparation of polymeric hybrid nanocomposites based on PE and nanosilica. Polymer 50:25952600 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Chrissafis, K, Paraskevopoulos, KM, Pavlidou, E, Bikiaris, D 2009 Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485:6571 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Chrissafis, K, Paraskevopoulos, KM, Tsiaoussis, I, Bikiaris, D 2009 Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci 114:16061618 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Dorigato A , D'Amato M, Pegoretti A. Thermo-mechanical properties of high density polyethylene - fumed silica nanocomposites: effect of filler surface area and treatment. J Polym Res. 2012 (in press).

    • Search Google Scholar
    • Export Citation
  • 39. Sinha Ray, S, Okamoto, M 2003 Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:15391641 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Vassiliou, A, Bikiaris, D, Pavlidou, E 2007 Optimizing melt-processing conditions for the preparation of iPP/fumed silica nanocomposites: morphology, mechanical and gas permeability properties. Macromol React Eng 1:488501 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Naveau, E, Dominkovics, Z, Detrembleur, C, Jérôme, C, Hári, J, Renner, K. et al. 2011 Effect of clay modification on the structure and mechanical properties of polyamide-6 nanocomposites. Eur Polym J 47 1 515 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Pukanszky, B, Demjen, Z 1999 Silane treatment in polypropylene composites: adsorption and coupling. Macromol Symp 139:93105 .

  • 43. Ábrányi, Á, Százdi, L, Pukánszky, B, Vancsó, GJ 2006 Formation and detection of clay network structure in poly(propylene)/layered silicate nanocomposites. Macromol Rapid Commun 27 2 132135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Lertwimolnun, W, Vergnes, B 2005 Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 46 10 34623471 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Akbari, B, Bagheri, R 2007 Deformation mechanism of epoxy/clay nanocomposite. Eur Polym J 43:782788 .

  • 46. Shen, L, Du, Q, Wang, H, Zhong, W, Yang, Y 2004 In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym Int 53:11531160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Gungor, A 2006 The physical and mechanical properties of polymer composites filled with Fe powder. J Appl Polym Sci 99:24382442 .

  • 48. Pan, M, Shi, X, Li, X, Hu, H, Zhang, L 2004 Morphology and properties of PVC/Clay nanocomposites via in situ emulsion polymerization. J Appl Polym Sci 94:277286 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Bikiaris, DN, Vassiliou, A, Pavlidou, E, Karayannidis, GP 2005 Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41:19651978 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Costa, FR, Wagenknecht, U, Heinrich, G 2007 LDPE/Mg–Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym Degrad Stab 92:18131823 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Garcia, N, Hoyos, M, Guzman, J, Tiemblo, P 2009 Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polym Degrad Stab 94:3948 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52. Leszczynska, A, Njuguma, J, Pielichowski, K, Banerjee, JR 2007 Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:7596 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Stark, NM, White, RH, Mueller, SA, Osswald, TA 2010 Evaluation of various fire retardants for use in wood flourepolyethylene composites. Polym Degrad Stab 95:19031910 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Minkova, L, Peneva, Y, Tashev, E, Filippi, S, Pracella, M, Magagnini, P 2009 Thermal properties and microhardness of HDPE/clay nanocomposites compatibilized by different functionalized polyethylenes. Polym Test 28:528533 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55. Elias, HG 2003 An introduction to plastics Wiley-VCH Weinheim.

  • 56. Cassagnau, P 2008 Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:21832196 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 47 0 0
Jul 2024 82 0 0
Aug 2024 75 0 0
Sep 2024 74 0 0
Oct 2024 196 0 0
Nov 2024 97 0 0
Dec 2024 3 0 0