View More View Less
  • 1 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • | 2 Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • | 3 Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • | 4 Polymer and Radiation Division, Malaysian Nuclear Agency, 43000, Bangi-Kajang, Malaysia
Restricted access

Abstract

This article presents the thermal degradation behavior of hybridized kenaf (bast)/pineapple leaf fiber (PALF) reinforced high density polyethylene (HDPE) composites by thermogravimetric and derivative thermogravimetric analyses (TG/DTG) with respect to the proportions of fiber in the composite, variation in fiber loading and fiber length. It was observed that the thermal decomposition of all the samples had taken place within the scheduled temperature range of 35–615 °C. For hybrid composites prepared at 40% fiber loading, the initial peak between 236.9 and 331 °C corresponds to a mass loss of between 23 and 26%, and expectedly, PALF composite and 1:1 hybrid composite have the highest mass lost at this point. Main decomposition temperature as revealed from DTG curves occurred around 467 °C for all except composite prepared with 0.75 and 2 mm fiber length. The mass loss at this temperature was between 64.4 and 73.7%. However, at 464.87 °C, around 98% of neat HDPE had already degraded. Decomposition temperature of other composites was a little higher than the temperature at which HDPE concluded decomposition. Kenaf composite on its own showed initial thermal resistance, but above 240 °C, a sharp increase in decomposition occurred with temperature. Interestingly, hybridization took care of this. Kenaf and PALF composite have shown weaker thermal stability compared to neat HDPE at lower temperatures. The introduction of more fiber into the matrix at onset caused the thermal stability of the hybridized composite to decrease. This reduction in thermal stability of the hybrid with increase in fiber loading became obvious after the dehydration process. Decomposition of hybrid composite is directly proportional to increase in fiber loading. However, at 385 °C, where neat HDPE started decomposing, the percentage degradation of the hybrid showed inverse proportionality with increase in fiber loading. As observed, the size of the lignin and hemicelluloses shoulders in DTG curves deepen with increase in fiber loading, an indication of increased presence with increase in fiber loading.

  • 1. Khalina, A, Zainuddin, ES, Aji, IS 2011 Rheological behaviour of polypropylene/kenaf fibre composite: effect of fibre size. Key Eng Mater 471:513517 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Plackett, D, Logstrup Andersen, T, Batsberg Pedersen, W, Nielsen, L 2003 Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63 9 12871296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Fung, KL, Xing, XS, Li, RKY, Tjong, SC, Mai, YW 2003 An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol 63 9 12551258 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Idicula, M, Neelakantan, NR, Oommen, Z, Joseph, K, Thomas, S 2005 A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites. J Appl Polym Sci 96 5 16991709 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Liu, W, Misra, M, Askeland, P, Drzal, LT, Mohanty, AK 2005 “Green” composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46 8 27102721 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Anuar, H, Ahmad, SH, Rasid, R, Ahmad, A, Busu, WNW 2008 Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J Appl Polym Sci 107 6 40434052 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Sreekala, MS, George, J, Kumaran, MG, Thomas, S 2002 The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62 3 339353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Aji, IS, Sapuan, SM, Zainudin, ES, Abdan, K 2009 Kenaf fibres as reinforcement for polymeric composites: a review. Int J Mech Mater Eng (IJMME) 4 3 239248.

    • Search Google Scholar
    • Export Citation
  • 9. Alvarez, VA, Vázquez, A 2004 Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab 84 1 1321 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. George, J, Bhagawan, SS, Thomas, S 1996 Thermogravimetric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites. J Therm Anal Calorim 47 4 11211140 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Münker, M 1998 Steigerung des Werkstoffpotentials von naturfaserverstärkten Kunststoffen. Werkstoffe in der Fertigung 3:15.

  • 12. Wielage, B, Lampke, T, Marx, G, Nestler, K, Starke, D 1999 Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337 1–2 169177 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Aji, IS, Zainudin, ES, Khalina, A, Sapuan, SM, Khairul, MD 2011 Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. J Reinf Plastics Compos 30 6 546553 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ramiah, MV 1970 Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci 14 5 13231337 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Bledzki, AK, Gassan, J 1997 Natural fiber reinforced plastics Marcel Dekker, Inc. New York.

  • 16. Ganan, P, Mondragon, I 2002 Surface modification of fique fibers. Effect on their physico-mechanical properties. Polym Compos 23 3 383394 .

  • 17. Ganan, P, Mondragon, I 2003 Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J Therm Anal Calorim 73 3 783795 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Ganan, P, Cruz, J, Garbizu, S, Arbelaiz, A, Mondragon, I 2004 Stem and bunch banana fibers from cultivation wastes: effect of treatments on physico-chemical behavior. J Appl Polym Sci 94 4 14891495 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Albano, C, Gonzalez, J, Ichazo, M, Kaiser, D 1999 Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 66 2 179190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Guadagno, L, Fontanella, C, Vittoria, V, Longo, P 1999 Physical aging of syndiotactic polypropylene. J Polym Sci Part B: Polym Phys 37 2 173180 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Joseph, PV, Joseph, K, Thomas, S, Pillai, CKS, Prasad, VS, Groeninckx, G. et al. 2003 The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A: Appl Sci Manuf 34 3 253266 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Rowell, RM, Young, RA, Rowell, JK 1997 Paper and Composites from Agro-Based Resources CRC Boca Raton.

  • 23. Semsarzadeh, MA, Mehrabzadeh, M, Arabshahi, SS 2002 Dynamic mechanical behavior of the dioctyl phthalate plasticized polyvinyl chloride-epoxidized soya bean oil. Eur Polym J 38 2 351358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Zainudin, ES, Sapuan, SM, Abdan, K, Mohamad, MTM 2009 Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites. Mater Des 30 3 557562 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Jones, FR 1994 Handbook of Polymer Composites Longman Scientific and Technical London.

  • 26. Thomas, S, Pothan, L 2009 Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale Archives contemporaines France.

  • 27. Mohanty, AK, Drzal, LT, Misra, M 2002 Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing. J Adhesion Sci Technol 16 8 9991015 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Burgueno, R, Quagliata, MJ, Mohanty, AK, Mehta, G, Drzal, LT, Misra, M 2005 Hybrid biofiber-based composites for structural cellular plates. Compos Part A: Appl Sci Manuf 36 5 581593 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Tsoumis, G 1991 Science and Technology of Wood. Structure, Properties, Utilization Van Nostrand Reinhold New York.

  • 30. Aji, IS, Zainuddin, ES, Khalina, A, Sapuan, SM 2011 Optimizing processing parameters for hybridized kenaf/PALF reinforced HDPE composite. Key Eng Mater 471:674679 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Mohanty, S, Verma, SK, Nayak, SK 2006 Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66 3–4 538547 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Jawaid, M, Khalil, HPSA 2011 Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute fibers reinforced epoxy hybrid composite. BioResources 6 3 23092322.

    • Search Google Scholar
    • Export Citation
  • 33. Kim, HS, Yang, HS, Kim, HJ, Park, HJ 2004 Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim 76 2 395404 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Manikandan Nair, KC, Thomas, S, Groeninckx, G 2001 Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61 16 25192529 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Wirawan, R, Sapuan, SM, Robiah, Y, Khalina, A 2011 Elastic and viscoelastic properties of sugarcane bagasse-filled poly (vinyl chloride) composites. J Therm Anal Calorim 103 3 10471053 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. K Van De Velde Kiekens, P 2002 Thermal degradation of flax: the determination of kinetic parameters with thermogravimetric analysis. J Appl Polym Sci 83 12 26342643 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 5 0 0
May 2021 2 0 0
Jun 2021 4 0 0
Jul 2021 8 0 0
Aug 2021 8 0 0
Sep 2021 13 0 0
Oct 2021 0 0 0