View More View Less
  • 1 Dental Materials, Department of Oral Dental Diseases, University of Chieti, Via Vestini 31, 66013, Chieti, Italy
  • | 2 Dental Materials, Department of Stomatology and Oral Sciences, University of Chieti, Via Vestini 31, 66013, Chieti, Italy
Restricted access

Abstract

The aim of this study has been to evaluate light-curing composites polymerization quality carried out by halogen and new-diode lamps through the thermal analysis (TG–DTA). Samples have been polymerized at 3–20–40–60 s by halogen lamp and 1–3–6–9 s by new-diode lamp. The TG/DTA analysis shows that different light-curing times affect the degree of conversion of the composite, since by increasing the curing time the quantity of the monomer that has not reacted (residual) decreases. The new-diode lamp, according to the manufacturer, can cure composite restorations in few seconds; but at the conditions used in this study, the samples cured by the halogen lamp at the standard times of exposure, compared to the samples cured in few seconds by the new-diode lamp, show a lower mass loss.

  • 1. Rahiotis, C, Patsouri, K, Silikas, N, Kakaboura, A 2010 Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci 52:187195 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Ruyter, IE, Oeysaed, H 1987 Composites for use in posterior teeth: composition and conversion. Biomed Mater Res 21:1123 .

  • 3. Gatti, A, Rastelli, ANS, Ribeiro, SJL, Messaddeq, Y, Bagnato, VS 2007 Polymerization of photocurable commercial dental methacrylate-based composites. J Therm Anal Calorim 87:631 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Peutzfeldt, A 1997 Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105:97116 .

  • 5. Anusavice, KJ 1998 Materiais Dentários, Phillips’ Science of Dental 10 Guanabara Koogan SA Rio de Janeiro 161.

  • 6. Silva, FF, Mendes, LC, Ferreira, M, Benzi, MR 2007 Degree of conversion versus the depth of polymerization of an organically modified ceramic dental restoration composite by Fourier transform infrared spectroscopy. J Appl Polym Sci 104:325 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Neves, AD, Discacciati, JA, Orefice, RL, Jansen, WC 2002 Correlation between degree of conversion, microhardness and inorganic content in composites. Pesqui Odontol Bras 16:349354 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Rueggeberg, FA, Hashinger, DT, Fairhurst, CW 1990 Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 6:241249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Tarumi, H, Imazato, S, Ehara, A, Kato, S, Ebi, N, Ebisu, S 1999 Post-irradiation polymerization of composites containing bis-GMA and TEGDMA. Dent Mater 15:238242 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Imazato, S, McCabe, JF, Tarumi, H, Ehara, A, Ebisu, S 2001 Degree of conversion of composites measured by DTA and FTIR. Dent Mater 17:178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. D'Alpino, PH, Wang, L, Rueggeberg, FA, Svizero, NR, Pereira, JC, Pashley, DH, Carvalho, RM 2006 Bond strength of resin-based restorations polymerized with different light-curing sources. J Adhes Dent 8:293298.

    • Search Google Scholar
    • Export Citation
  • 12. Kakaboura, A, Rahiotis, C, Zinelis, S, Al-Dhamadi, YA, Silikas, N, Watts, DC 2003 In vitro characterization of two laboratory-processed resin composites. Dent Mater 19:393398 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Peutzfeldt, A, Asmussen, E 2005 Resin composite properties and energy density of light cure. J Dent Res 84:659662 .

  • 14. Lee, SY, Huang, HM, Lin, CY, Shih, YH 1998 Leached components from dental composites in oral simulating fluids and the resultant composite strengths. J Oral Rehabil 25:575588 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Calheiros, FC, Kawano, Y, Stansbury, JW, Braga, RR 2006 Influence of radiant exposure on contraction stress, degree of conversion and mechanical properties of resin composites. Dent Mater 22:799803 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Celik, EU, Yapar, AG, Ates, M, Sen, BH 2006 Bacterial microleakage of barrier materials in obturated root canals. J Endod 32:10741076 .

  • 17. Tanaka, K, Taira, M, Shintani, H, Wakasa, K, Yamaki, M 1991 Residual monomers (TEGDMA and Bis-GMA) of a set visible light-cured dental composite resin when immersed in water. J Oral Rehabil 18:353362 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Spahl, W, Budzikiewicz, H, Geurtsen, W 1998 Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent 26:137145 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Pelka, M, Distler, A, Petschelt, A 1999 Elution parameters and HPLC detection of single components from resin composite. Clin Oral Investig 3:194200 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Lee, DH, Lim, BS, Lee, YK, Ahn, SJ, Yang, HC 2006 Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent Mater 22:10861092 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Schweikl, H, Hartmann, A, Hiller, KA, Spagnuolo, G, Bolay, C, Brockhoff, G, Schmalz, G 2007 Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine. Dent Mater 23:688695 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Geurtsen, W, Lehmann, F, Spahl, W, Leyhausen, G 1998 Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 41:474480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Gwinnett, AJ, Tay, FR 1998 Early and intermediate time response of the dental pulp to an acid etch technique in vivo. Am J Dent 10:S35S44.

    • Search Google Scholar
    • Export Citation
  • 24. Subay, RK, Demirci, M 2005 Pulp tissue reactions to a dentin bonding agent as a direct capping agent. J Endod 31:201204 .

  • 25. AB De Paula Tango, RN, Sinhoreti, MA, Alves, MC, Puppin-Rontani, RM 2010 Effect of thickness of indirect restoration and distance from the light-curing unit tip on the hardness of a dual-cured resin cement. Braz Dent J 21:117122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Daronch, M, Miranda, WG, Braga, RR Mirage 2000 A composite depth of cure using different light sources. J Dent Res 79:370.

  • 27. Hansen, EK, Asmussen, E 1997 Visible-light-curing units: correlation between depth of cure and distance between exit window and resin surface. Acta Odontol Scand 55:162166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Price, RBT, Félix, CA, Andreou, P 2004 Effect of resin composite and irradiation distance in the performance of curing lights. Biomaterials 25:44654477 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Halvorson, RH, Erickson, RL, Davidson, CL 2002 Energy dependent polymerization of resin-based composite. Dent Mater 18:463469 .

  • 30. Almeida, CC, Mothé, CG 2009 Characterization of dental composites by thermal analysis, infrared spectroscopy and scanning electron microscopy. J Therm Anal Calorim 97:585589 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Nomura, Y, Teshima, W, Tanaka, N, Yoshida, Y, Nahara, Y, Okazaki, M 2002 Thermal analysis of dental resins cured with blue light-emitting diodes (LEDs). J Biomed Mater Res 63:209213 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Bernardi, MIB, Rojas, SS, Andreeta, MRB, Rastelli, AND, Hernandes, AC, Bagnato, VS 2008 Thermal analysis and structural investigation of different dental composite resins. J Therm Anal Calorim 94:791796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Ferrante, M, Petrini, M, Trentini, P, Ciavarelli, L, Spoto, G 2010 Thermal analysis of light-curing composites. J Therm Anal Calorim 102:107111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Ferrante, M, Trentini, P, Croce, F, Petrini, M, Spoto, G 2011 Thermal analysis of commercial gutta-percha. J Therm Anal Calorim 103:563567 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Ferrante M , Petrini M, Trentini P, Spoto G. Evaluation of composites light-curing at different times and distances of irradiation. J Therm Anal Calorim. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Vaidyanathan, J, Vaidyanathan, TK 1991 Computer-controlled differential scanning calorimetry of dental composites. IEEE Trans Biom Eng 38:319325 .

  • 37. Chen, M-H, Hsu, SH, Sun, SP, Su, WF 2006 Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 22:138145 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Lin, J, Siddiqui, JA, Ottenbrite, RM 2001 Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polym Adv Technol 12:285292 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Lim, BS, Ferracane, JL, Condon, JR, Adey, JD 2002 Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater 18:111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Halvorson, RH, Erickson, RL, Davidson, CL 2003 The effect of filler and silane content on conversion of resin-based composite. Dent Mater 19:327333 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Liu, Q, Ding, J, Chambers, DE, Debnath, S, Wunder, SL, Baran, GR 2001 Filler-coupling agent matrix interactions in silica/polymethylmethacrylate composites. J Biomed Mater Res 57:384393 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)