View More View Less
  • 1 Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA
  • | 2 200 Baltusrol Road, Knoxville, TN, 37934-3707, USA
Restricted access

Abstract

This review concerns the “termination of crystallization or ordering of flexible, linear macromolecules” before the transition from the amorphous phase reaches thermodynamic equilibrium. It makes use of the precision of hindsight in interpretation of old experiments and the back-integration of more recent experiments into the knowledge gained from the well-known older experiments which had led to the paradox: Once the semi-ordered sample is produced, its disordering frequently follows a zero-entropy-production path, i.e., its latent heat is linked to the free enthalpy of the non-equilibrium phase, while on ordering, there exists a metastable temperature region of the polymer melt which cannot be broken by nuclei of the ordered phase. The classic scheme of crystallization via nucleation and growth is used to set the stage for the discussion. This scheme has been used for many years to describe the motion of single motifs to crystallize small, rigid molecules and its slow-down when approaching the glass transition. For flexible macromolecules, the ordering mechanism needs to be expanded to the description of cooperative ordering schemes of more than one motif of the molecular segments and a more complicated, multiple-step slow down when approaching the much wider glass transition region. The structural features causing the incomplete ordering of flexible macromolecules are the three-dimensional defects created at the phase boundaries between ordered and disordered phases, initially called the amorphous defects. The matter contained in these amorphous defects possesses a much broader glass transition. If this glass transition lies above the glass transition of the unrestrained, amorphous phase, the amorphous defects represent a separate nanophase, called a rigid-amorphous fraction. Modern differential scanning calorimetry (DSC), temperature-modulated DSC, and differential fast scanning calorimetry permit the study of latent heats and heat-capacity changes involved in the liquid–solid transitions of amorphous phases, crystals, and mesophases. In this more complex framework, the “termination of crystallization of flexible, linear macromolecules” is described together with the possibility of molar mass segregation by long-range and local diffusion instead of a thermodynamic mechanism.

  • 1. Wunderlich B . Thermal analysis of materials. A computer-assisted lecture course, published via the Internet (2005-2007). http://www.scite.eu and http://athas.prz.rzeszow.pl. Copyright: 16 Jan 2007.

    • Search Google Scholar
    • Export Citation
  • 2. Prime, RB, Wunderlich, B 1969 Extended-chain crystals. III. Size distribution of polyethylene crystals grown under elevated pressure. J Polym Sci A-2 7:20612072 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Prime RB , Wunderlich B. Extended-chain crystals. IV. Melting under equilibrium conditions. J Polym Sci A-2. 1969;7: 207389. [Partially preprinted under the title: “The equilibrium melting of polymers,” and presented at the Proc. IUPAC symp in Kyoto and Tokyo, Japan, 30 Sep 1966].

    • Search Google Scholar
    • Export Citation
  • 4. Prime, RB, Wunderlich, B, Melillo, L 1969 Extended-chain crystals. V. Thermal analysis and electron microscopy of the melting process in polyethylene. J Polym Sci A-2 7:20912097 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Flory, PJ 1949 Thermodynamics of crystallization of high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixture with diluents. J Chem Phys 17:223240 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Wunderlich, B 1964 The melting of defect polymer crystals. Polymer 5:611624 .

  • 7. Wunderlich, B 1968 Crystallization during polymerization. Fortschr Hochpolymeren Forsch. Adv Polym Sci 5:568619 .

  • 8. Wunderlich B . Macromolecular physics, vol I (crystal structure, morphology, defects, Chap 1-4), vol II (crystal nucleation, growth, annealing, Chap 5-7), vol III (crystal melting. Chap 8-10). New York: Academic Press; 1973, 1976, and 1980. http://www.scite.eu and http://athas.prz.rzeszow.pl.

    • Search Google Scholar
    • Export Citation
  • 9. Wunderlich B . Thermal analysis of polymeric materials. Berlin: Springer; 2005. ISBN 978-3-540-23629-0. www.springer.com/3-540-23629-5.

    • Search Google Scholar
    • Export Citation
  • 10. Dalton J . A new system of chemical philosophy. London; 1808.

  • 11. The term ‘macromolecule’ was first used on p 788 of: Staudinger H, Fritschi J. Über die Hydrierung des Kautschuks und über seine Konstitution. Helv Chim Acta 1922;5: 785806.

    • Search Google Scholar
    • Export Citation
  • 12. Staudinger H . Arbeitserinnerungen. Heidelberg: Hüthig; 1961. In his Nobel Lecture of 1953 Staudinger sets the limit of small molecules at 1,000 atoms (p. 317).

    • Search Google Scholar
    • Export Citation
  • 13. Chen, W, Wunderlich, B 1999 Nanophase separation of small and large molecules. Macromol Chem Phys 200:283311 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Wunderlich, B 2010 Thermodynamic description of condensed phases. J Therm Anal Calorim 102:413424 .

  • 15. Wunderlich, B 1960 Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Phys Chem 64:10521056 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Hildebrand, JH 1915 The entropy of vaporization as a means of distinguishing normal liquids. J Am Chem Soc 37:970978 .

  • 17. See, for example: Herzberg G. Infrared and Raman spectra of polyatomic molecules. Princeton: van Nostrand; 1945.

  • 18. Wunderlich, B 2007 The glass transition as key to identify solid phases. J Appl Polym Sci 105:4959 .

  • 19. Einstein A . Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys. 1907;22: 180190 (corrections p. 800).

    • Search Google Scholar
    • Export Citation
  • 20. Debye, P 1912 Zur Theorie der spezifischen Wärme. Ann Phys 39:789839 .

  • 21. Wunderlich, B, Baur, H 1970 Heat capacities of linear high polymers. Fortschr Hochpolymeren Forsch. Adv Polym Sci 7:151368 .

  • 22. Gaur, U, Wunderlich, B 1980 The glass transition temperature of polyethylene. Macromolecules 13:445446 .

  • 23. Wunderlich B . The Athas Data Base on heat capacities of polymers. Pure Appl Chem 1995;67: 10191026. For data tables see Pyda M http://athas.prz.rzeszow.pl.

    • Search Google Scholar
    • Export Citation
  • 24. Sumpter, BG, Noid, DW, Liang, GL, Wunderlich, B 1994 Atomistic dynamics of macromolecular crystals. Adv Polym Sci 116:2772 .

  • 25. Wunderlich, B, Poland, D 1963 Thermodynamics of crystalline linear high polymers. II. The influence of copolymer units on the thermodynamic properties of polyethylene. J Polym Sci A 1:357372.

    • Search Google Scholar
    • Export Citation
  • 26. Suzuki, H, Grebowicz, J, Wunderlich, B 1985 The glass transition of polyoxymethylene. Br Polym J 17:13 .

  • 27. Sullivan, P, Wunderlich, B 1964 The interference microscopy of crystalline linear high polymers. SPE Trans 1964 4 113119.

  • 28. Pak, J, Wunderlich, B 2002 Reversible melting of polyethylene extended-chain crystals detected by temperature-modulated calorimetry. J Polym Sci B Polym Phys 40:22192227 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Hellmuth, E, Wunderlich, B 1965 Superheating of linear high-polymer polyethylene crystals. J Appl Phys 36:30393044 .

  • 30. Pak, J, Boller, A, Moon, I, Pyda, M, Wunderlich, B 2000 Thermal analysis of paraffins by calorimetry. Thermochim Acta 357/358:259266 .

  • 31. Pak, J, Wunderlich, B 2001 Melting and crystallization of polyethylene of different molar mass by calorimetry. Macromolecules 34:44924503 .

  • 32. Wunderlich, B 2003 Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28 3 383450 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Mehta, A, Wunderlich, B 1975 A study of molecular fractionation during the crystallization of polymers. Colloid Polym Sci 253:193205 .

  • 34. Wunderlich, B, Mehta, A 1974 Macromolecular nucleation. J Polym Sci Polym Phys Ed 12:255263 .

  • 35. Wunderlich, B 1979 Molecular nucleation and segregation. Faraday Discuss R Soc Chem 68:239243 .

  • 36. Mehta, A, Wunderlich, B 1974 Detection of tie-molecules by thermal analysis. Makromol Chem 175:977982 .

  • 37. Wunderlich, B 2007 Calorimetry of nanophases of macromolecules. Int J Thermophys 28:958967 .

  • 38. Pak, J, Pyda, M, Wunderlich, B 2003 Rigid amorphous fractions and glass transitions in poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules 36:495499 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Cheng, SZD, Wunderlich, B 1987 Glass transition and melting behavior of poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules 20:16301637 .

  • 40. Kunz, M, Möller, M, Heinrich, U-R, Cantow, H-J 1988 Electron spectroscopic imaging studies on polyethylene, chain-folded and extended-chain crystals. Makromol Chem Makromol Symp 20 21 147158 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Wunderlich, B 2011 The influence of liquid to solid transitions on the changes of macromolecular phases from disorder to order. Thermochim Acta 522:213 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Blundell, DJ, Keller, A, Kovacs, AJ 1966 A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J Polym Sci B 4:481486 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Blundell, DJ, Keller, A 1968 Nature of self-seeding polyethylene crystal nuclei. J Macromol Sci b2:301336.

  • 44. Boon, J, Challa, G DW Van Krevelen 1968 Crystallization kinetics of isotactic polystyrene II Influence of thermal history on number of nuclei. J Polym Sci A-2 Polym Phys Ed 6:18351851 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Koutsky, JA, Walton, AG, Baer, E 1967 Nucleation of polymer droplets. J Appl Phys 38:18321839 .

  • 46. Zhuravlev, E, Schick, C 2010 Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 50:113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Zhuravlev, E, Schmelzer, JWP, Wunderlich, B, Schick, C 2011 Kinetics of nucleation and overall crystallization in poly(∊-caprolactone) (PCL). Polymer 52:18631997 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Pyda, M, Nowak-Pyda, E, Heeg, J, Huth, H, Minakov, AA ML Di Lorenzo Schick, C, Wunderlich, B 2006 Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci B Polym Phys 44:13641377 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Androsch, R ML Di Lorenzo Schick, C, Wunderlich, B 2010 Mesophases in polyethylene, polypropylene and poly(1-butene). Polymer 51:46394662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50. Mileva, D, Androsch, R, Zhuravlev, E, Schick, C, Wunderlich, B 2012 Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53:277282 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51. Wurm A , Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C. Crystallization and homogeneous nucleation kinetics of poly(∊-caprolactone) (PCL) with different molar masses. Macromolecules (submitted).

    • Search Google Scholar
    • Export Citation
  • 52. Festag, R, Alexandratos, SD, Cook, KD, Joy, DC, Annis, B, Wunderlich, B 1997 Single- and few-chain polystyrene particles by electrospray. Macromolecules 30:62386242 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53. Bu, H, Pang, Y, Song, D, Yu, T, Voll, TM, Czornyj, G, Wunderlich, B 1991 Single molecule single crystals. J Polym Sci B Polym Phys 29:139152 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54. Bu, H, Chen, E, Xu, S, Guo, K, Wunderlich, B 1994 Single-molecule single crystals of isotactic polystyrene. J Polym Sci B Polym Phys 32:13511357 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 1 0 0
Nov 2021 1 0 0
Dec 2021 3 0 0