View More View Less
  • 1 Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, MA, 02155, USA
Restricted access

Abstract

PET/silica nanocomposite fibers of high quality were fabricated from electrospinning by choosing appropriate surface modification of inorganic fillers, solution properties, and processing conditions. The existence of an immobilized layer around silane-modified silica particles in PET fibers was verified by Fourier transform infrared spectroscopy, the results of which confirm previous thermal analysis studies. The influence of silica particles on the crystal growth during isothermal crystallization as well as the phase structure of the crystallized nanocomposite fibers were examined using differential scanning calorimetry. The PET crystallization rate increases significantly with increasing silica content, which indicates that the silica nanoparticles act as an efficient nucleating agent to facilitate PET crystallization. Using Avrami analysis, for the first time, preferred 1-D crystal growth was confirmed for geometrically confined nanocomposite fibers. Addition of silica particles makes the crystal growth more likely to occur in a 1-D manner.

  • 1. Chung, JW, Son, SB, Chun, SW, Kang, TJ, Kwak, SY 2008 Thermally stable exfoliated poly(ethylene terephthalate) (PET) nanocomposites as prepared by selective removal of organic modifiers of layered silicate. Polym Degrad Stabil 93:252 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Guan, G, Li, C, Yuan, X, Xiao, Y, Liu, X, Zhang, D 2008 New insight into the crystallization behavior of poly(ethylene terephthalate)/clay nanocomposites. J Polym Sci Polym Phys. 46:2380 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Hwang, SY, Lee, WD, Lim, JS, Park, KH, Im, SS 2008 Dispersibility of clay and crystallization kinetics for in situ polymerized PET/pristine and modified montmorillonite nanocomposites. J Polym Sci Polym Phys. 46:1022 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Ammala, A, Bell, C, Dean, K 2008 Poly(ethylene terephthalate) clay nanocomposites: improved dispersion based on an aqueous ionomer. Compos Sci Technol 68:1328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Chung, SC, Hahm, WG, Im, SS, Oh, SG 2002 Poly(ethylene terephthalate)(PET) nanocomposites filled with fumed silicas by melt compounding. Macromol Res 10:221 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Xu, X, Ding, Y, Qian, Z, Wang, F, Wen, B, Zhou, H, Zhang, S, Yang, M 2009 Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension. Polym Degrad Stabil 94:113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Liu, W, Tian, X, Cui, P, Li, Y, Zhang, K, Yang, Y 2004 Preparation and characterization of PET/silica nanocomposites. J Appl Polym Sci 91:1229 .

  • 8. Bikiaris, D, Karavelidis, V, Karayannidis, G 2006 A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromol Rapid Commun 27:1199 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Chen, H, Liu, Z, Cebe, P 2009 Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer 50:872 .

  • 10. Ke, Y, Long, C, Qi, Z 1999 Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. J Appl Polym Sci 71:1139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Siegel, J, Slepička, P, Heitz, J, Kolská, Z, Sajdl, P, Švorčík, V 2010 Gold nano-wires and nano-layers at laser-induced nano-ripples on PET. Appl Surf Sci 256:2205 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ke, YC, Wu, TB, Xia, YF 2007 The nucleation, crystallization and dispersion behavior of PET-monodisperse SiO2 composites. Polymer 48:3324 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Antoniadis, G, Paraskevopoulos, KM, Bikiaris, D, Chrissafis, K 2010 Non-isothermal crystallization kinetic of poly(ethylene terephthalate)/fumed silica (PET/SiO(2)) prepared by in situ polymerization. Thermochim Acta 510:103 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ma, Q, Cebe, P 2010 Phase structure of electrospun poly(trimethylene terephthalate) composite nanofibers containing carbon nanotubes. J Therm Anal Calorim 102:425 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ma, Q, Mao, B, Cebe, P 2011 Chain confinement in electrospun nanocomposites: using thermal analysis to investigate polymer-filler interactions. Polymer 52:3190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Kim, JS, Reneker, DH 1999 Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39:849 .

  • 17. Pyda M . ATHAS data bank, http://athas.prz.rzeszow.pl/, 2008.

  • 18. Cole, KC, Ajji, A, Pellerin, E 2002 New insights into the development of ordered structure in poly(ethylene terephthalate). 1. Results from external reflection infrared spectroscopy. Macromolecules 35:770 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Stokr, J, Schneider, B, Doskocilova, D, Lovy, J, Sedlacek, P 1982 Conformational structure of poly(ethylene terephthalate). Infra-red, Raman and n.m.r. spectra. Polymer 23:714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Yang, Y, Xu, H, Gu, H 2006 Preparation and crystallization of poly(ethylene terephthalate)/SiO2 nanocomposites by in situ polymerization. J Appl Polym Sci 102:655 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Wang, Y, Shen, C, Li, H, Li, Q, Chen, J 2004 Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci 91:308 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. He, JP, Li, HM, Wang, XY, Gao, Y 2006 In situ preparation of poly(ethylene terephthalate)-SiO2 nanocomposites. Eur Polym J. 42:1128 .

  • 23. Hu, X, Lu, Q, Kaplan, D, Cebe, P 2009 Microphase separation controlled beta-sheet crystallization kinetics in fibrous proteins. Macromolecules 42:2079 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Xu, JT, Fairclough, JPA, Mai, SM, Ryan, AJ, Chaibundit, C 2002 Isothermal crystallization kinetics and melting behavior of poly(oxyethylene)-b-poly(oxybutylene)/poly(oxybutylene). Macromolecules 35:6937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Choi, J, Kwak, SY 2004 Architectural effects of poly(epsilon-caprolactone)s on the crystallization kinetics. Macromolecules 37:3745 .

  • 26. Avrami, M 1939 Kinetics of phase change I: general theory. J Chem Phys 7:1103 .

  • 27. Avrami, M 1940 Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212 .

  • 28. Avrami, M 1941 Granulation, phase change, and microstructure: kinetics of phase change. III. J Chem Phys. 9:177 .

  • 29. Wunderlich, B 1976 Marcromolecular physics, vol 2, crystal nucleation, growth, annealing Academic Press New York.

  • 30. Lu, XF, Hay, JN 2001 Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42:9423 .

  • 31. Tan, S, Su, A, Li, W, Zhou, E 2000 New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate). J Polym Sci Polym Phys. 38:53 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Turturro, G, Brown, GR, St-Pierre, LE 1984 Effect of silica nucleants on the rates of crystallization of poly (ethylene terephthalate). Polymer 25:659 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 4 0 0
Jul 2021 2 0 0
Aug 2021 2 0 0
Sep 2021 2 0 0
Oct 2021 3 0 0
Nov 2021 0 3 3
Dec 2021 0 0 0