View More View Less
  • 1 Higher Polytechnic School, University of A Coruña, Campus de Esteiro, 15403, Ferrol, Spain
  • | 2 Thermal Analysis, Rheology and Microcalorimetry Applications, TA Instruments-Waters Cromatografía, S.A. Avda. Europa, 21 Parque Empresarial La Moraleja, 28108, Alcobendas, Madrid, Spain
Restricted access

Abstract

The present study suggests a new approach, based on the utilization of temperature modulated differential scanning calorimetry (TMDSC) technique, for identifying and characterizing the organic–inorganic interphase of two materials: an epoxy–fumed silica nanocomposite and a thermoplastic polyurethane (TPU)–multiwalled nanotube (MWNT) composite. The approach used here makes use of TMDSC data and basically consists of using the phase angle or the derivative of the reversing heat flow instead of the reversing heat flow curve itself. In the case of epoxy–fumed silica composites, two glass transition regions were identified. The glass transition temperature (Tg) of the composite was observed to vary as a consequence of the filler content. This study shows that the Tg variation is due to the formation of an organic–inorganic interphase, with its own glass transition temperature, which is different from the epoxy matrix Tg. In the case of TPU–MWNT composites, two relaxations and an additional first order transition were observed: the first relaxation corresponds to the hard segment, the second is related to an interaction between filler and matrix and the third process may be connected to the partial melting of the hard segment. The addition of 0.5 wt% MWNT causes a small reduction in Tg of the TPU. A major nanotube addition, 10 wt%, induces the appearance of a new relaxation that may be associated with the existence of an interface. In general, a better separation between the matrix and interphase glass transitions was obtained by the TMDSC phase angle signal.

  • 1. Wetzel, B, Haupert, F, Zhang, MQ 2003 Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63:20552206 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Park, JH, Jana, SC 2003 The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer 44:20912100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Han, J, Cho, K 2006 Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range. J Mater Sci 41:42394245 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Drzal, LT, Rich, MJ, Koenig, MF, Lloyd, PF 1983 Adhesion of graphite fibers to epoxy matrices. II. The effect of fiber finish. J Adhes 16:133152 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Schadler, LS 2003 Polymer-based and polymer-filled nanocomposites PM Ajayan LS Schadler PV Braun eds. Nanocomposite science and technology Wiley Weinheim 77135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Prime, RB 1997 Thermosets E Turi eds. Thermal characterization of polymeric materials 2 Academic Press San Diego 13801766.

  • 7. Tarrío-Saavedra, J, López-Beceiro, J, Naya, S, Gracia, C, Artiaga, R 2010 Controversial effects of fumed silica on the curing and thermomechanical properties of epoxy composites. Express Polym Lett 4:382395 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Tarrio-Saavedra, J, López-Beceiro, J, Naya, S, Artiaga, R 2008 Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym Degrad Stab 93:21332137 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Huang, GC, Lee, JK 2010 Isothermal cure characterization of fumed silica/epoxy nanocomposites: the glass transition temperature and conversion. Compos Part A Appl Sci Manuf 41:473479 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Thomas, LC 2005 An introduction to the techniques of differential scanning calorimetry (DSC) and modulated DSC R Artiaga eds. Thermal analysis. Fundamentals and applications to material characterization Publicaciones de la Universidade da Coruña A Coruña 925.

    • Search Google Scholar
    • Export Citation
  • 11. Reading, M, Hourston, DJ 2006 Modulated temperature differential scanning calorimetry: theoretical and practical applications in polymer characterisation Springer Dordrecht .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Artiaga, R, García, A 2005 Fundamentals of DMA R Artiaga eds. Thermal analysis. Fundamentals and applications to material characterization Publicaciones de la Universidade da Coruña Coruña 183206.

    • Search Google Scholar
    • Export Citation
  • 13. Chartoff, RP, Menczel, JD, Dillman, SH 2009 Dynamic mechanical analysis (DMA) JD Menczel RB Prime eds. Thermal analysis of polymers: fundamentals and applications Wiley San Jose 387496.

    • Search Google Scholar
    • Export Citation
  • 14. Donth, E 2001 The glass transition. Relaxation dynamics in liquids and disordered materials Springer Berlin.

  • 15. Menczel, JD, Judovits, L, Prime, RB, Bair, HE, Reading, M, Swier, S 2009 Differential scanning calorimetry (DSC) JD Menczel RB Prime eds. Thermal analysis of polymers: fundamentals and applications’ Wiley New York 7239 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. G Van Assche A Van Hemelrijck Rahier, H B Van Mele 1997 Thermochim Acta 304 305 317 .

  • 17. Gracia-Fernández, C, Gómez-Barreiro, S, López-Beceiro, J, Tarrío-Saavedra, J, Naya, S, Artiaga, R 2010 Comparative study of the glass transition temperature by DMA and TMDSC. Polym Test 29:10021006 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Koberstein, JT, Galambos, AF, Leung, LM 1992 Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules 25:61956204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Chen, TK, Shieh, TS, Chui, JY 1998 Studies on the first DSC endotherm of polyurethane hard segment based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules 31:13121320 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Tien, YI, Wei, KW 2002 The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane. J Appl Polym Sci 86:17411748 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Chen, TK, Chui, JY, Shieh, TS 1997 Macromolecules. Glass transition behaviors of a polyurethane hard segment based on 4,4′-diisocyanatodiphenylmethane and 1,4-butanediol and the calculation of microdomain composition. Macromolecules 30:50685074 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Xia, H, Song, M 2005 Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter 1:386394 .

  • 23. Xia, H, Song, M 2006 Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. J Mater Chem 16:18431851 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Koerner, H, Price, G, Pearce, NA, Alexander, M, Vaia, RA 2004 Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Cho, JW, Kim, JW, Jung, YC, Goo, NS 2005 Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412416 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Zhang, H, Zhang, Z, Friedrich, K, Eger, C 2006 Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:18331842 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Liu, YL, Wei, WL, Hsu, KY, Ho, WH 2004 Thermal stability of epoxy–silica hybrid materials by thermogravimetric analysis. Thermochim Acta 412:139147 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Preghenella, M, Pegoretti, A, Migliaresi, C 2005 Thermomechanical characterization of fumed silica–epoxy nanocomposites. Polymer 46:1206512072 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Yousefi, A, Lafleur, PG, Gauvin, R 1997 Kinetic studies of thermoset cure reactions: a review. Polym Compos 18:157168 .

  • 30. Naya, S, Martínez-Vilariño, S, Artiaga, R 2009 Efecto de ciclos térmicos en la permeabilidad y propiedades térmicas de compuestos nanoarcilla-epoxi. Dyna's J 84:7176.

    • Search Google Scholar
    • Export Citation
  • 31. Pellín, MP, Regueira, LN, Quintela, AL, Losada, PP, Gándara, JS, Abuín, SP 1995 Epoxy resins based on trimethylolpropane. II. Kinetic and thermodynamic parameters of cure with m-XDA. J Appl Polym Sci 55:15071516 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Quintela, AL, Pellin, MP, Abuin, SP 1996 Epoxidation reaction of trimethylolpropane with epichlorohydrin: kinetic study of chlorohydrin formation. Polym Eng Sci 36:568573 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Jena, PK, Brocchi, EA, Solórzano, IG, Motta, MS 2004 Identification of a third phase in Cu–Al2O3 nanocomposites prepared by chemical routes. Mater Sci Eng A Struct Mater Prop Microstruct Process 371:7278 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kim, D, Lee, JS, Barry, CMF, Mead, JL 2007 Microscopic measurement of the degree of mixing for nanoparticles in polymer. Nanocomposites by TEM images. Microsc Res Tech 70:539546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Reed, KE 1980 Dynamic mechanical analysis of fiber reinforced composites. Polym Compos 1:4449 .

  • 36. Ruppert, D, Sheather, SJ, Wand, MP 1995 An effective bandwidth selector for local least squares regression. J Am Stat Assoc 90:12571270 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Finnigan, B, Halley, P, Jack, K, McDowell, A, Truss, R, Casey, P, Knott, R, Martin, D 2006 Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites. J Appl Polym Sci 102:128139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Kultys, A, Rogulska, M, Pikus, S, Skrzypiec, K 2009 The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic–aromatic chain extenders. Eur Polym J 45:26292643 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Fernández, M, Landa, M, Muñoz, ME, Santamaría, A 2010 Thermal and viscoelastic features of new nanocomposites based on a hot-melt adhesive polyurethane and multi-walled carbon nanotubes. Macromol Mater Eng 295:10311041 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Fernández, I, Santamaría, A, Muñoz, ME, Castell, P 2007 A rheological analysis of interactions in phenoxy/organoclay nanocomposites. Eur Polym J 43:31713176 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)