View More View Less
  • 1 Laboratório de Materiais Avançados, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
Restricted access

Abstract

Thermal stability of polymers is an important parameter that determines the application as well as the processing conditions. The green polymers have shown low thermal stability, such as the polyhydroxyalkanoates (PHAs). The PHAs with different comonomers containing hydroxyvalerate (HV) were studied. It was seen that the green polymer showed a fast thermal degradation process. The addition of the HV comonomer modified this profile and the thermal degradation kinetic. The blend prepared between the PHAs and other polymers can modify the thermal degradation process of the green polymers. In the present study, blends of cellulose acetate propionate and PHAs were prepared, and the thermal degradation kinetics of these blends were evaluated. It was observed that the cellulose acetate propionate (CAP) phase in the blends modified the thermal degradation process and kinetic profile of the PHA phase. In the blends, the thermal stability of the PHAs was slightly modified because of CAP reducing the reactivity of the PHAs. On the other hand, the thermal stability of the CAP phase in the blends is not largely modified by the PHA phase. However, the hydroxyvalerate comonomer decreases the reactivity of the CAP phase at the start of thermal degradation of the same. The interaction between the phases promotes the synergetic interaction, which slightly improves the thermal stability of the two polymers blends.

  • 1. Yu, L, Dean, K, Li, L 2006 Polymer blends and composites from renewable resources. Prog Polym Sci 31:576602 .

  • 2. Baker, AMM, Mead, J 2002 Thermoplastics CA Harper eds. Handbook of plastics, elastomers & composites 4 McGraw-Hill New York 118.

  • 3. Kunioka, M, Doi, Y 1990 Thermal degradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23:19331936 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. El-Shafee, E, Saad, GR, Fahmy, SM 2001 Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/Cellulose acetate butyrate blends. Eur Polym J 31:20912104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Pospísil, J, Horák, Z, Krulis, Z, Nespurek, S, Kuroda, S-I 1999 Degradation and aging of polymer blends I. Thermal, mechanical and thermal degradation. Polym Degrad Stab 65:405414 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Ojumu, TV, Yu, J, Solomon, BO 2004 Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3:1824.

  • 7. Lee, MY, Lee, TS, Park, WH 2001 Effect of side chains on the thermal degradation of poly(3-hydroxyalkanoates). Macromol Chem Phys 202 7 12571261 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Fraga, A, Ruseckaite, RA, Jiménez, A 2005 Thermal degradation and pyrolysis of mixtures based on poly(3-hydroxybutyrate-8%-3-hydroxyvalerate) and cellulose derivatives. Polym Test 24:526534 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Buchanan, CM, Gedon, SC, Pearcy, BG, White, AW, Wood, MD 1993 Cellulose ester-aliphatic polyester blends: the influence of diol length on blend miscibility. Macromolecules 26:57045710 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Edgar, KJ, Buchanan, CM, Debenham, JS, Rundquist, PA, Seiler, BD, Shelton, MC, Tindall, D 2001 Advanced in cellulose ester performance and application. Prog Polym Sci 26:16051688 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Amim Jr., J, Blachechen, LS, Petri, DFS. Effect of sorbitan-based surfactants on glass transition temperature of cellulose esters. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Scandola, M, Ceccorulli, G, Pizzoli, M 1992 Miscibility of bacterial poly(3-hydroxybutyrate) with cellulose esters. Macromolecules 25:64416446 .

  • 13. Buchanan, CM, Gedon, SC, White, AW, Wood, MD 1992 Cellulose acetate butyrate and poly(hydroxybutyrate-co-valerate) copolymer blends. Macromolecules 25:73737381 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Galwey, AK, Brown, ME 1998 Kinetic background to thermal analysis and calorimetry ME Brown eds. Handbook of thermal analysis and calorimetry. vol. 1: Principles and practice Elsevier Science Amsterdam.

    • Search Google Scholar
    • Export Citation
  • 15. Gongwer, PE, Arisawa, H, Brill, TB 1997 Kinetics and products from flash pyrolysis of cellulose acetate butyrate (CAB) at 460–600 °C. Combust Flame 109:370381 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Dollimore, D, O’Connell, C 1998 A comparison of the thermal decomposition of preservatives, using thermogravimetry and rising temperature kinetics. Thermochim Acta 324:3348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Burnham, AK, Braun, RL 1999 Global kinetic analysis of complex materials: energy & fuels. Am Chem Soc J 13 1 122.

  • 18. Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Chao-Rui, L, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T 2000 Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Maciejewski, M 2000 Computational aspects of kinetic analysis. Part B: the ICTA kinetics project–the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta 355 33 145154 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Vyazovkin, S, Wight, AC 1997 Kinetics in solids. Annu Rev Phys Chem 48:125149 .

  • 21. Friedman HL . Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastics. J Polym Sci Part C. 1964; n.6: 183195.

    • Search Google Scholar
    • Export Citation
  • 22. Budrugeac, P 2005 Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermal-oxidative degradation of polymers and polymeric materials. Polym Degrad Stab 89:265273 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Gallagher, PK 1998 Thermogravimetry and thermomagnetometry ME Brown eds. Handbook of thermal analysis and calorimetry. vol 1: principles and practice Elsevier Amsterdam 225278.

    • Search Google Scholar
    • Export Citation
  • 24. Scott, G 1995 Initiation processes in polymer degradation. Polym Degrad Stab 48:315322 .

  • 25. Kopinke, FD, Remmler, M, Mackenzie, K 1996 Thermal decomposition of biodegradable polyesters–I: poly(β-hydroxybutyric acid). Polym Degrad Stab 52:2538 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Pereira, SMF, Sánchez, RJ, Rieumont, J, Cabrera, JG 2008 Synthesis of biodegradable polyhydroxyalkanoate copolymer from a renewable source by alternate feeding. Polym Eng Sci 48:20512059 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Rodríguez, RJS, Silva, MG, Vargas, H, Briones, JR 1999 Phothoacustic monitoring of internal plastification in poly (3-hydroxybutirate-co-hydroxyvalerate) copolymers: measurements of thermal parameters. J Braz Chem Soc 10 2 97103.

    • Search Google Scholar
    • Export Citation
  • 28. Yoshie, N, Menju, H, Sato, H, Inoue, Y 1995 Complex composition distribution of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 28 19 65166521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Doi, Y, Kunioka, M, Nakamura, Y, Soga, K 1986 Nuclear magnetic resonance studies on poly(β -hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules 19 11 28602864 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Bete, D, Lehrle, RS 1998 The effect of blending on polymer stability: kinetics and mechanisms. Polym Degrad Stab 62:5766 .

  • 31. Ariffin, H, Nishida, H, Shirai, Y, Hassan, MA 2008 Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polym Degrad Stab 93:14331439 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Chrissafis, K, Paraskevopoulos, KM, Bikiaris, DN 2006 Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab 91:6068 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Erceg, M, Kovacic, T, Klaric, I 2005 Dynamic thermogravimetric degradation of poly(3-hydroxybutyrate)/aliphaticearomatic copolyester blends. Polym Degrad Stab 90:313318 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. McNeill, IC 1997 Thermal degradation mechanisms of some addition polymers and copolymers. J Anal Appl Pyrolysis 40–41:2141 .

  • 35. Santos, AF, Polese, L, Crespi, MS, Ribeiro, CA 2009 Kinetic model of poly(3-hydroxybutyrate) thermal degradation from experimental non-isothermal data. J Therm Anal Calorim 96 1 287291 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Galwey, AK, Brown, ME 2002 Application of the Arrhenius equation to solid state kinetics: can this be justified?. Thermochim Acta 386:9198 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 3 0 0
May 2021 1 0 0
Jun 2021 1 0 0
Jul 2021 2 1 2
Aug 2021 1 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0