Thermal degradation of a mixed-valence oxalate based molecular material {N(n-C4H9)4[FeIIFeIII(C2O4)3]}∞ was investigated by thermogravimetric (TG) analysis. Considering the mass loss at each step of TG profile, possible step-wise thermal degradation reaction pathways of the precursor material are proposed which indicate the formation of hematite and magnetite as the solid end product of the degradation reaction. The IR spectroscopy and powder X-ray diffraction (XRD) studies of the thermally degraded samples supplement the proposed reaction pathways.
1. Yang HC , Eun HC, Cho YZ, Lee HS, Kim IT. Kinetic analysis of dechlorination and oxidation of PrOCl by using a non-isothermal TG method. Thermochim Acta. 2009;484: 77–81.
2. Brown, ME 2004 Introduction to thermal analysis techniques and applications 2 Kluwer Academic Publishers Dordrecht .
3. Donkova B , Kotzeva B, Vasileva P, Mehandjiev D. Thermal magnetic investigation of the decomposition of NixMn1-xC2O4·2H2O. Thermochim Acta. 2009;481: 12–9.
4. Ōkawa H , Matsumoto N, Tamaki H, Kida S, Ohba M. Ferrimagnetic mixed-metal assembles {NBu4 [MFe(ox)3]}x. Mol Cryst Liq Cryst. 1993;233: 257–62.
5. Pellaux R , Schmalle HW, Huber R, Fischer P, Hauss T, Ouladdiaf B, ‘Decurtins S. Molecular-based magnetism in bimetallic two-dimensional oxalate bridged networks. An X-ray and neutron diffraction study. Inorg Chem. 1997;36: 2301–8.
6. Bhattacharjee A , Reiman S, Ksenofontov V, Gütlich, P. Mössbauer spectroscopy under a magnetic field to explore the low-temperature spin structure of the layered ferromagnetic material—{N(n-C4H9)4[FeIIFeIII(C2O4)3]}∞. J Phys Condens Matter. 2003;15: 5103–12.
7. Bhattacharjee A , Balanda M, Miyazaki Y, Sorai M, Gütlich P. Uncompensated magnetization in the layered molecular antiferromagnet {N(n-C5H11)4[MnIIFeIII(ox)3]}∞. Polyhedron. 2009;28: 2899–904.
8. Neo KE , Ong YY, Huynh HV, Andy Hor TS. A single-molecular pathway from heterometallic MM’ (M = BaII, MnII; M’ = CrIII) oxalato complexes to intermetallic composite oxides. J Mater Chem. 2007;17: 1002–6.
9. Bhattacharjee A , Roy D, Roy M, Chakraborty S, De A, Kusz J, Hofmeister W. Rod-like ferrites through thermal degradation of a molecular ferrimagnet. J Alloy Compd. 2010;503: 449–53.
10. Ruiz-Agudo E , Martin-Ramos JD, Rodriguez-Navarro C. Mechanism and kinetics of dehydration of epsomite crystals formed in the presence of organic additives. J Phys Chem B. 2007;111: 41–52.
11. Gillot, B 1994 Infrared spectrometric investigation of submicron metastable cation-deficient spinels in relation to order-disorder phenomena and phase transition. Vib Spectrosc 6:127–148 .
12. Kustova GN , Burgina EB, Sadykov VA, Poryvaev SG. Vibrational spectroscopic investigation of the goethite thermal decomposition products. Phys Chem Miner. 1992;18: 379–82.
13. Angermann, A, Töffer, J 2008 Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dehydrate. J Mater Sci 43:5123–5130 .
14. Lyubutin IS , Lin CR, Korzhetskiy Yu V, Dmitrieva TV, Chiang RK. Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. J Appl Phys. 2009;106: 34311–6.