View More View Less
  • 1 College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073, China
Restricted access

Abstract

Curing course of Huntsman 1564/3486 epoxy resin system was studied under dynamic and isothermal curing conditions by differential scanning calorimetry technique. The autocatalytic cure kinetic model was established to describe the curing behaviour. A new modified phenomenological curing model based on the Olivier's model was proposed to predict the relationship between the degree of cure and the couple of time and temperature. Then, the degree of cure was calculated by both the kinetic model and the modified Olivier's model. A comparison of the results calculated with the experimental data show that the modified Olivier's model is more accurate in the later stage of the curing course, especially at high temperatures. The modified Olivier's model is simple and easy to use, could be applied to predict the degree of cure at isothermal temperatures well in engineering.

  • 1. Jenninger, W, Schawe, JEK, Alig, I 2000 Calorimetric studies of isothermal curing of phase separating epoxy networks. Polymer 41:15771588 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Karkanas, PI, Partridge, IK 2000 Cure modeling and monitoring of epoxy/Amine resin systems- Cure kinetics modeling. J Appl Polym Sci 77:14191431 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Li, M, Zhu, Q, Geubelle, PH. et al. 2000 Optimal curing for thermoset matrix composites: thermochemical consideration. Polym Compos 22:118131 .

  • 4. Antonucci, V, Giordano, M, Hsiao, KT. et al. 2002 A methodology to reduce thermal gradients due to the exothermic reactions in composites processing. Int J Heat Mass Transf 45:16751684 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Vinnik, RM, Roznyatovsky, VA 2003 Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction, Part I: Mangelsdorf's approach. J Therm Anal Calorim 73:807817 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Macan, J 2004 Study of cure kinetics of epoxy-silica organiceinorganic hybrid materials. Thermochim Acta 414:219225 .

  • 7. Vinnik, RM, Roznyatovsky, VA 2004 Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction, Part V: phenyl glycidyl ether–aniline. J Therm Anal Calorim 75:753764 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Xie, HF, Liu, BH 2005 Cure kinetics study of carbon nanofibers/epoxy composites by isothermal DSC. J Appl Polym Sci 96:329335 .

  • 9. Arribas, C, Masegosa, MR, Salom, C. et al. 2006 Epoxy/poly (benzyl methacrylate) blends: miscibility, phase separation on curing and morphology. J Therm Anal Calorim 86:693698 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Román, F, Montserrat, S, Hutchinson, JM 2007 On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. J Therm Anal Calorim 87:113118 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Pagano, RL, Calado, VMA, Tavares, FW. et al. 2011 Parameter estimation of kinetic cure using DSC non-isothermal data. J Therm Anal Calorim 103:495499 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Mehran, H, Mohammad, HB, Masoud, E 2011 Cure kinetics of a glass/epoxy prepreg by dynamic differential scanning calorimetry. J Appl Polym Sci 120:6269 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kamal, MR 1974 Thermoset characterization for moldability analysis. Polym Eng Sci 14:2326 .

  • 14. López, J, Rico, M, Montero, B. et al. 2009 Polymer blends based on an epoxy-amine thermoset and a thermoplastic. J Therm Anal Calorim 95:369376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Montserrat, S, Flaque, C, Calafell, M. et al. 1995 Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 269:213229 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Lin, KF, Shyu, JY 2001 Early cure behavior of a liquid dicyanate ester resin. J Polym Sci A 39:30853092 .

  • 17. Liu, HP, George, GA 1997 Study on the gelation of photocatalyzed dicyanate ester resins. Polymer 38:29973002 .

  • 18. Liu, HP, George, GA 2000 Determination of thermal cure kinetics of thin films of photocatalysed dicyanate ester by FTIR emission spectroscopy. Polym Int 49:15051512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Deng, Y, Martin, GC 1996 Effect of diffusional limitations on the gelation of cyanate ester resins. J Appl Polym Sci 64:115125 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Deng, Y, Martin, GC 1995 Diffusion phenomena during cyanate resin cure. Polymer 37:35933601 .

  • 21. Christopher, WW, Wayne, DC, Andy, AG 1997 Chemico-diffusion kinetics of model epoxy-amine resins. Polymer 38:32513261 .

  • 22. Olivier, P, Cottu, JP 1998 Optimisation of the co-curing of two different composites with the aim of minimisting residual curing stress levels. Compos Sci Technol 58:645651 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Olivier P , Cottu JP, Marinez JJ, et al. Optimisation of cure cycle parameters for a carbon epoxy laminate. 2nd international conference on deformation and fracture composites, Manchester; 1993. p. 2931.

    • Search Google Scholar
    • Export Citation
  • 24. Lei, Z, Xiao, H 2007 A variable reaction order model for prediction of curing kinetics of thermosetting polymers. Polymer 48:61256133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Dai, XQ, Xiao, JY, Zeng, JC. et al. 2008 Curing kinetics of epoxy resin of RFI process using isothermal DSC. Acta Materiae Compositae Sinica 25:1823.

    • Search Google Scholar
    • Export Citation
  • 26. Xu, CW 1985 Introduction of numerical analysis (in Chinese) 1 High Education Press Beijing.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)