View More View Less
  • 1 Department of Chemistry, Faculty of Sciences and Engineering, Meisei University, Hodokubo 2-1-1, Hino, Tokyo, 191-8506, Japan
Restricted access

Abstract

In this study, we developed the technique of Li+ ion-attachment mass spectrometry (IAMS), a method that has shown promise in the fields of chemical analysis, plasma diagnostics, chemical process monitoring, and thermal analysis. The experimental setup is such that Li+ ions get attached to chemical species (R) by means of intermolecular association reactions to produce (R + Li)+ adduct ions, which are then transferred to a quadrupole mass spectrometer. Recently, an IAMS system became available commercially in a complete form from the Canon Anelva Corp. IAMS has several notable features. It provides only molecular ions, and it permits direct determination of unstable, intermediary, and/or reactive species. Also, it is highly sensitive because it involves ion-molecule reactions. With regard to its applications for thermal analysis, one of its greatest advantages is that it can be used to directly analyze gaseous compounds because it provides mass spectra only of the molecular ions formed by Li+ ion attachment to any chemical species introduced into the spectrometer, including free radicals. Coupled with evolved gas analysis, IAMS works well for the analysis of nonvolatile, untreated, and complex samples because the simplicity of the ion-attachment spectrum permits the analysis of mixtures electron-impact spectra of which are difficult to interpret.

  • 1. Fujii, T 2007 Ion attachment mass spectrometry M Gross eds. Encyclopedia of mass spectrometry: ionization method America Society for Mass Spectrometry/Elsevier Amsterdam 327334.

    • Search Google Scholar
    • Export Citation
  • 2. Sablier M , Fujii T. Mass spectrometry of free radicals: a methodological overview. In: Webb G, editor. Progress in chemistry, Sect. C (Phys Chem). Cambridge: Royal Society of Chemistry; 2005, p. 5399.

    • Search Google Scholar
    • Export Citation
  • 3. Fujii, T 2000 Alkali-metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrom Rev 19:111138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Sablier, M, Fujii, T 2002 Mass spectrometry of free radicals. Chem Rev 102:28552924 .

  • 5. Brown, ME 2004 Introduction to thermal analysis techniques and applications: hot topics in thermal analysis and calorimetry Springer New York.

    • Search Google Scholar
    • Export Citation
  • 6. Materazzi, S, Gentili, A, Curini, R 2006 Applications of evolved gas analysis. Part 2: EGA by mass spectrometry. Talanta 69:781794 .

  • 7. Takahashi, S, Tsukagoshi, M, Kitahara, Y, Juhasz, M, Fujii, T 2010 Design and performance of an evolved gas analysis ion attachment mass spectrometer. Rapid Commun Mass Spectrom 24:26252630 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Castleman, AW, Keesee, RG 1986 Clusters:bridging the gas and condensed phases. Acc Chem Res 19:413419 .

  • 9. Taft, RW, Anvia, F, Gal, JF, Walsh, S, Capon, M, Holmes, MC, Hosn, K, Oloumi, G, Vasanwala, R, Yazdani, S 1990 Free energies of cation-molecule complex formation and of cation-solvent transfers. Pure Appl Chem 62:1723 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Woodin, RL, Beauchamp, JL 1978 Binding of lithium(1+) ion to Lewis bases in the gas phase. Reversals in methyl substituent effects for different reference acids. J Am Chem Soc 100:501508 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Selvin, PC, Fujii, T 2001 Lithium ion attachment mass spectrometry: instrumentation and features. Rev Sci Instrum 72:22482252 .

  • 12. Fujii, T 1992 Quadrupole mass spectrometry in combination with lithium ion attachment for sampling at atmospheric pressure: possible coupling to a superfluid critical chromatography. Anal Chem 64:775778 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Fujii, T, Ogura, M, Jimba, H 1989 Chemical ionization mass spectrometry with use of alkali ion attachment to molecule. Anal Chem 61:10261029 .

  • 14. Kitahara, Y, Takahashi, S, Kuramoto, N, Sala, M, Tsugoshi, T, Sablier, M, Fujii, T 2009 Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies. Anal Chem 81:31553158 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Westerberg, LM, Pfaffli, P, Sundholm, F 1982 Detection of free radicals during processing of polyethylene and polystyrene plastics. Am Ind Hygiene Assoc J 43:544546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Kitahara, Y, Takahashi, S, Tsukagoshi, M, Fujii, T 2011 Free radicals produced from thermally-irradiated polyethylene polymers: an ion attachment mass spectrometric study. Chem Phys Lett 507:226228 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wunderlich, B 1995 Calorimetry and thermal analysis of polymers Hanser Publishers Munich.

  • 18. Lin, CH, Lin, HY, Liao, WZ, Dai, SHA 2007 Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials. Green Chem 9:3843 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Sala, M, Kitahara, Y, Takahashi, S, Fujii, T 2010 Effect of atmosphere and catalyst on reducing bisphenol A (BPA) Emission during thermal degradation of polycarbonate. Chemosphere 78:4245 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Kitahara, Y, Takahashi, S, Tsukagoshi, M, Fujii, T 2010 Formation of bisphenol A by thermal degradation of poly(bisphenol A carbonate). Chemosphere 80:12811284 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Arulmozhiraja, S, Coote, ML, Kitahara, Y, Juhász, M, Fujii, T 2011 Is bisphenol A biradial formed in the pyrolysis of polycarbonate?. J Phys Chem A 115:48744881 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Takahashi, S, Kitahara, Y, Nakamura, M, Shiokawa, Y, Fujii, T 2010 Temperature-resolved thermal analysis of cisplatin by means of Li+ ion attachment mass spectrometry. Phys Chem Chem Phys 12:39103913 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Juhász M , Kitahara Y, Fujii T. Thermal decomposition of vitamin c: an evolved gas analysis-ion attachment mass spectrometry study. Food Chemistry. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Masaru, T, Shizu, H, Kazuhiro, N, Yoshiko, Y, Sadahiko, I, Yasuo, KJ 2008 Vitamin C activity of dehydroascorbic acid in humans: association between changes in the blood vitamin C concentration or urinary excretion after oral loading. Nutr Sci Vitaminol 54:315320 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Mach, K, Novakova, J, Raynor, JB 1992 Electron spin resonance spectroscopy of pentacarbonylmanganese (Mn(CO)5·) radicals generated in the gas phase thermolysis of decacarbonyldimanganese (Mn2(CO)10). J Organomet Chem 439:341345 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Kitahara Y , Fujii T. Evolved gas analysis—ion attachment mass spectrometric observation of Mn(CO)5 and Mn2(CO)9 radicals produced by Mn2(CO)10 pyrolysis. Res Chem Intermed. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Tsukagoshi M , Kitahara Y, Takahashi S, Tsugoshi T, Fujii T. Characterization of Japanese lacquer liquid and films by means of evolved gas analysis-ion attachment mass spectrometry. Anal Methods. 2011. doi .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Webb, M 2000 Lacquer: technology and conservation: a comprehensive guide to the technology and conservation of Asian and European lacquer Butterworth-Heinemann London.

    • Search Google Scholar
    • Export Citation
  • 29. Niimura, N, Miyakoshi, T, Onodera, J, Higuchi, T 1999 Identification of ancient lacquer film using two-stage pyrolysis-gas chromatography/mass spectrometry. Archaeometry 41:137149 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 2 0 0
Jul 2021 4 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0