The presented paper deals with the study of thermophysical properties of cast and complex alloyed nickel based on superalloy Inconel 713LC (IN713LC). In this work, the technique of Differential Thermal Analysis was selected for determination of the phase transformation temperatures and for the study of the effect of varying heating/cooling rate at these temperatures. The samples taken from as-received state of superalloy were analysed at heating and cooling rates of 1, 5, 10, 20 and 50 °C min−1 with the help of the experimental system Setaram SETSYS 18TM. Moreover, the transformation temperatures at zero heating/cooling rate were calculated. The recommended values for IN713LC after correcting to a zero heating rate, are 1,205 °C (Tγ′,solvus), 1,250 °C (solidus) and 1,349 °C (liquidus). Influence of heating/cooling rate on shift of almost all temperatures of phase transformations was established from the DTA curves. Undercooling was observed at the cooling process. The samples before and after DTA analysis were also subjected to the phase analysis by scanning electron microscopy using the microscope JEOL JSM-6490LV equipped with an energy dispersive analyser EDAX (EDS INCA x-act). Documentation of the microstructure was made in the mode of secondary (SEI) and backscattered (BEI) electron imaging. On the basis of DTA analysis and phase analysis it may be stated that development of phase transformations of the alloy IN713LC will probably correspond to the following scheme: melting → γ phase; melting → γ + MC; melting → eutectics γ/γ′; melting → γ + minority phases (e.g. borides); and matrix γ → γ′.
1. Durand-Charre, M 1997 The microstructure of superalloys OPA Amsterdam.
2. Davis, JR 2000 Nickel, cobalt and their alloys ASM International Ohio.
3. Chapman, LA 2004 Application of high temperature DSC technique to nickel based superalloys. J Mater Sci 39:7229–7236 .
4. Zupanič, F, Bončina, T, Križman, A, Tichelaar, FD 2001 Structure of continuously cast Ni-based superalloy inconel 713C. J Alloy Compd 329:290–297 .
5. Antonsson, T, Fredriksson, H 2005 The effect of cooling rate on the solidification of INCONEL 718. Metall Mater Trans 36B:85–96.
6. Smetana, B, Zlá, S, Dobrovská, J, Kozelský, P 2010 Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA. Int J Mater Res 101:398–408 .
7. Zlá S , Dobrovská J, Smetana B, Žaludová M, Vodárek V, Konečná K. Differential thermal analysis and phase analysis of nickel based super-alloy IN 738LC. Metal 2010: 19th international metallurgical and materials Conference. 2010;790-95.
8. Zlá, S, Dobrovská, J, Smetana, B, Žaludová, M, Vodárek, V, Konečná, K 2012 Thermophysical and structural study of IN 792–5A nickel based superalloy. Metalurgija 51 1 83–86.
9. Smetana B , Žaludová M, Zlá S, Dobrovská J, Cagala M, Szurman I, Petlák D. Application of high temperature DTA technique to Fe based systems. METAL 2010: 19th International metallurgical and materials conference. 2010: 357–62.
10. Petrenec, M, Obrtlík, K, Polák, J 2007 High temperature low cycle fatigue of superalloys Inconel 713LC and Inconel 792–5A. Key Eng Mater 348–349:101–104 .
11. Gallagher, PK 2003 Handbook of thermal analysis and calorimetry: principles and practice 2 Elsevier Amsterdam.
12. Wacławska, I, Szumera, M 2010 Use of thermal analysis in the study of soil Pb immobilization. J Therm Anal Calorim 99:873–877 .
13. Lazau, I, Pacurariu, C, Babut, R 2011 The use of thermal analysis in the study of Ca3Al2O6 formation by the polymeric precursor method. J Therm Anal Calorim 105:427–434 .
14. Ojo, OA, Richards, NL, Chaturvedi, MC 2004 On incipient melting during high temperature heat treatment of cast Inconel 738 superalloy. J Mater Sci 39:7401–7404 .
15. Seo, SM, Kim, IS, Lee, JH, Jo, CY, Miyahara, H, Ogi, K 2007 Eta phase and boride formation in directionally solidified Ni-base superalloy IN792 + Hf. Metall Mater Trans 38A:883–893 .
16. Ojo, OA, Richards, NL, Chaturvedi, MC 2006 Study of the fusion zone and heat-affected microstructures in tungsten inert gas-welded INCONEL 738LC superalloy. Metall Mater Trans 37A:421–433 .
17. Lekstrom M , D′Souza N, Dong HB, Ardakani MG, Shollock BA. Solidification kinetics in the Ni-base superalloy IN713LC. TMS (Miner, Metal Mater Soc). 2007: 29–33.
18. D′Souza, N, Lekstrom, M, Dai, HJ, Shollock, BA, Dong, HB 2007 Quantitative characterisation of last stage solidification in nickel base superalloy using enthalpy based method. Mater Sci Technol 23:1085–1092 .
19. Mills, KC, Youssef, YM, Li, Z 2006 The effect of aluminium content on thermophysical properties of Ni-based superalloys. ISIJ Int 46:50–57 .
20. Mills, KC, Youssef, YM, Li, Z, Su, Y 2006 Calculation of thermophysical properties of Ni-based superalloys. ISIJ Int 46:623–632 .
21. MTDATA. http://www.npl.co.uk/science-technology/advanced-materials/measurement-techniques/mtdata/. Accessed 20 Oct 2011.
22. Thermo-Calc Software. http://www.thermocalc.com/. Accessed 20 Oct 2011.
23. D′Souza, N, Dong, HB, Ardakani, MG, Shollock, BA 2005 Solidification path in the Ni-base superalloy, IN713 LC—quantitative correlation of last stage solidification. Scr Mater 53:729–733 .
24. Ojo, OA, Richards, NL, Chaturverdi, MC 2004 Microstructural study of weld fusion zone of TIG welded IN 738LC Nickel-based superalloy. Scr Mater 51:683–688 .