View More View Less
  • 1 National R&D Institute for Isotopic and Molecular Technologies, Donath Str. 65-103, POB-700, 400293, Cluj-Napoca, Romania
Restricted access

Abstract

This article is a review of new possibilities offered by two photothermal (PT) methods, a contact (photopyroelectric (PPE) calorimetry) and a non-contact one (photothermal radiometry (PTR)) for accurate measurements of dynamic thermal parameters (thermal diffusivity and effusivity) of condensed matter samples. Among a large variety of detection configurations, we selected in the article a recent proposed one, allowing for coupled PPE–PTR experiments. The detection cell of such a configuration is composed by a directly irradiated pyroelectric sensor, a liquid layer (coupling fluid) and a solid/liquid backing material. The measurements are based on the thickness scanning procedure of the coupling fluid (TWRC technique). Some recent applications concerning measurements of thermal diffusivity and effusivity of some liquids and solids (thin layers or bulk materials) together with a study of the accuracy of the investigations are described.

  • 1. P Hess J Pelzl eds. 1988 Photoacoustic and photothermal phenomena, Springer Ser. Opt. Sci. Vol. 58 Springer Berlin Heidelberg.

  • 2. J Murphy JW Maclachlan-Spicer LC Aamodt BSH Royce eds. 1988 Photoacoustic and photothermal phenomena II, Springer Ser. Opt. Sci. Vol. 58 Springer Berlin Heidelberg.

    • Search Google Scholar
    • Export Citation
  • 3. Mandelis, A 1992 Principles and perspectives of photothermal and photoacoustic phenomena Elsevier New York.

  • 4. Tam, AC 1986 Applications of photoacoustic sensing techniques. Rev Mod Phys 58:381431 .

  • 5. D Bicanic eds. 1991 Photoacoustic and photothermal phenomena III, Springer Ser. Opt. Sci. Vol. 58 Springer Berlin Heidelberg.

  • 6. Dadarlat, D, Streza, M, Pop, MN, Tosa, V, Delenclos, S, Longuemart, S, Sahraoui, AH 2010 Photopyroelectric calorimetry of solids. FPPE–TWRC method. J Therm Anal Calorim 101:397402 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Dadarlat, D, Pop, MN, Streza, M, Longuemart, S, Depriester, M, Sahraoui, AH, Simon, V 2010 Combined FPPE–PTR calorimetry involving TWRC technique. Theory and mathematical simulations. Int J Thermophys 31:22752283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Mandelis A , Matvienko A. Photopyroelectric thermal-wave cavity devices-10 years later. In: Denis Remiens, editor. Pyroelectric materials and sensors. Trivandrum: Research Signpost; 2007. p. 6196.

    • Search Google Scholar
    • Export Citation
  • 9. Mandelis, A 2006 Diffusion-Wave Fields: Mathematical Methods and Green Functions Springer New York.

  • 10. Streza, M, Pop, MN, Kovacs, K, Simon, V, Longuemart, S, Dadarlat, D 2000 Thermal effusivity investigations of solid materials by using the thermal-wave-resonator-cavity (TWRC) configuration. Theory and mathematical simulations. Laser Phys 19:13401344 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Dadarlat, D 2009 Photopyroelectric calorimetry of liquids. Recent development and applications. Laser Phys 19:13301340 .

  • 12. Santos, R, Miranda, LCM 1981 Theory of the photothermal radiometry with solids. J Appl Phys 52:41944198 .

  • 13. Delenclos, S, Dadarlat, D, Houriez, N, Longuemart, S, Kolinsky, C, Hadj Sahraoui, A 2007 On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum 78:024902 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Dadarlat, D, Neamtu, C, Pop, R, Marinelli, M, Mercuri, F 2007 On the selection of the experimental parameters in a thermal-wave-resonator-cavity (TWRC) configuration. J Optoelectron Adv Mat 9:28472852.

    • Search Google Scholar
    • Export Citation
  • 15. Shen, J, Mandelis, A 1995 Thermal-wave resonator cavity. Rev Sci Instrum 66:49995005 .

  • 16. Balderas-Lopez, LA, Mandelis, A, Garcia, JA 2000 Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum 71:29332937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Dadarlat, D, Neamtu, C 2009 High performance photopyroelectric calorimetry of liquids. Acta Chim Slov 56:225236.

  • 18. Dadarlat D , Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE-PTR calorimetry involving TWRC technique II. Experimental: application to thermal effusivity measurements of solids. Int J Thermophysics. 2011. doi .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Pittois, S, Chirtoc, M, Glorieux, C, Bril, W J Van den Thoen 2001 Direct determination of thermal conductivity of solids and liquids at very low frequencies using the photopyroelectric method. Anal Sci 17:S110S113.

    • Search Google Scholar
    • Export Citation
  • 20. Menon PC , Rajesh RN, Glorieux C. High accuracy self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids. Rev Sci Instrum. 2009;80: 054904.

    • Search Google Scholar
    • Export Citation
  • 21. Streza, M, Dadarlat, D, Simon, V, Prejmerean, C, Silaghi-Dumitrescu, L 2009 Thermal diffusivity investigations of some dental materials by using photopyroelectric calorimetry. J Optoelectron Adv Mat Symposia 1:7073.

    • Search Google Scholar
    • Export Citation
  • 22. Dadarlat, D, Neamtu, C 2006 Detection of molecular associations in liquids by photopyroelectric measurements of thermal effusivity. Meas Sci Technol 17:32503254 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Pop, MN, Dadarlat, D, Streza, M, Tosa, V 2011 Photopyroelectric investigation of thermal effusivity of binary liquid mixtures by FPPE–TWRC method. Acta Chim Slov 58:549554.

    • Search Google Scholar
    • Export Citation
  • 24. Dadarlat, D, Pop, MN 2010 New FPPE–TWRC methodology for measuring the thermal parameters of thin solids. Meas Sci Technol 21:105701105705 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Bailey RA . Materials properties database (JAHM software). 1999.

  • 26. Dadarlat D , Pop MN. Self-consistent calorimetry of Liquids. Int J Therm Sci. 2011. Submitted.

  • 27. Huang, L, Liu, LS 2009 Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J Food Eng 95:179185 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Incropera, FP, DeWitt, DP 1996 Fundamentals of Heat and Mass Transfer 4 John Wiley & Sons New York.

  • 29. Marin, E 2004 Thermal wave physics: principles and applications to the characterization of liquids. Rev Ciencias Exatas Naturais 6:145169.

    • Search Google Scholar
    • Export Citation
  • 30. YS Touloukian eds. 1970 Thermophysical properties of matter. The thermophysical properties data center data series IFI Plenum Press New York.

    • Search Google Scholar
    • Export Citation
  • 31. YS Touloukian eds. 1967 Thermophysical Properties of High Temperatures Solid Materials MacMillan New York.

  • 32. Perry, JH 1963 Chemical Engineering Handbook McGraw-Hill New York.

  • 33. Pop MN , Dadarlat D. Photopyroelectric measurement of thermal effusivity of volatile liquids. Thermal wave resonator cavity method. J Optoelectron Adv Mat. 2011. Submitted.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)